Автор работы: Пользователь скрыл имя, 24 Ноября 2011 в 00:58, курсовая работа
Метод математического моделирования, сводящий исследование явлений внешнего мира к математическим задачам, занимает ведущее место среди других методов исследования, особенно в связи с появлением ЭВМ. Он позволяет проектировать новые технические средства, работающие в оптимальных режимах, для решения сложных задач науки и техники; проектировать новые явления. Математическая модель проявили себя как важное средство управления.
1.Введение………………………………………………………………………….
1.1. Корреляционно-регрессионный анализ……………………………………..
1.2. Корреляционно-регрессионный анализ и его возможности……………….
1.3. Предпосылки корреляционного и регрессионного анализа………………..
1.4. Метод наименьших квадратов (расчёт коэффициентов)…………………
1.5. Интерпретация параметров регрессии…………………………………….
2. Программа для расчёта полиномиальной корреляции……………………….
3.Расчёт , выбор полиномиальной и графической зависимости………………..
4.Список литературы……………………………………………………………....
МИНИСТЕРСТВО НАУКИ И ОБРАЗОВАНИЯ УКРАИНЫ
ДВУЗ „УКРАИНСКИЙ ГОСУДАРСТВЕННЫЙ ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ
УНИВЕРСИТЕТ”
Кафедра
химической технологи неорганических
веществ и экологии
КУРСОВАЯ РАБОТА
по дисциплине: Математическое моделирование
на тему:
аппроксимация экспериментальных данных
в координатах полинома n-ой степени на
примере зависимости растворимости соли
от температуры
Студента
Группы
Руководитель практики
от университета
Днепропетровск 2010
Содержание
1.Введение……………………………………………………
1.1. Корреляционно-регрессионный анализ……………………………………..
1.2. Корреляционно-регрессионный анализ и его возможности……………….
1.3. Предпосылки корреляционного и регрессионного анализа………………..
1.4. Метод наименьших квадратов (расчёт коэффициентов)…………………
1.5. Интерпретация параметров регрессии…………………………………….
2. Программа для расчёта полиномиальной корреляции……………………….
3.Расчёт , выбор полиномиальной и графической зависимости………………..
4.Список литературы……………………………
1.Введение
Математическая модель, приближённое описание какого-либо класса явлений внешнего мира, выраженное с помощью математической символики. Математическая модель — мощный метод познания внешнего мира, а также прогнозирования и управления. Анализ Математическая модель позволяет проникнуть в сущность изучаемых явлений. Процесс математического моделирования, то есть изучения явления с помощью Математическая модель, можно подразделить на 4 этапа.
Первый этап — формулирование
законов, связывающих основные
объекты модели. Этот этап требует
широкого знания фактов, относящихся
к изучаемым явлениям, и глубокого
проникновения в их
Второй этап — исследование
математических задач, к
Третий этап — выяснение того,
удовлетворяет ли принятая
Четвёртый этап — последующий
анализ модели в связи с
накоплением данных об
Типичным примером, иллюстрирующим характерные этапы в построении Математическая модель, является модель Солнечной системы. Наблюдения звёздного неба начались в глубокой древности. Первичный анализ этих наблюдений позволил выделить планеты из всего многообразия небесных светил. Таким образом, первым шагом было выделение объектов изучения. Вторым шагом явилось определение закономерностей их движений. (Вообще определения объектов и их взаимосвязей являются исходными положениями — «аксиомами» — гипотетической модели.) Модели Солнечной системы в процессе своего развития прошли через ряд последовательных усовершенствований. Первой была модель Птолемея (2 век н. э.), исходившая из положения, что планеты и Солнце совершают движения вокруг Земли (геоцентрическая модель), и описывавшая эти движения с помощью правил (формул), многократно усложнявшихся по накоплении наблюдений.
Развитие мореплавания поставило перед астрономией новые требования к точности наблюдений. Н. Коперником в 1543 была предложена принципиально новая основа законов движения планет, полагавшая, что планеты вращаются вокруг Солнца по окружностям (гелиоцентрическая система). Это была качественно новая (но не математическая) модель Солнечной системы. Однако не существовало параметров системы (радиусов окружностей и угловых скоростей движения), приводящих количеств, выводы теории в должное соответствие с наблюдениями, так что Коперник был вынужден вводить поправки в движения планет по окружностям (эпициклы).
Следующим шагом в развитии модели Солнечной системы были исследования И. Кеплера (начало 17 века), который сформулировал законы движения планет. Положения Коперника и Кеплера давали кинематическое описание движения каждой планеты обособленно, не затрагивая ещё причин, обусловливающих эти движения.
Принципиально новым шагом
К 40-м годам 19 века выводы
динамической модели, объектами
которой были видимые планеты,
вошли в противоречие с
Метод математического
Корреляционно-регрессионный
анализ
Корреляционный анализ и регрессионный анализ являются смежными разделами математической статистики, и предназначаются для изучения по выборочным данным статистической зависимости ряда величин; некоторые из которых являются случайными. При статистической зависимости величины не связаны функционально, но как случайные величины заданы совместным распределением вероятностей. Исследование взаимосвязи случайных величин биржевых ставок приводит к теории корреляции, как разделу теории вероятностей и корреляционному анализу, как разделу математической статистики. Исследование зависимости случайных величин приводит к моделям регрессии и регрессионному анализу на базе выборочных данных. Теория вероятностей и математическая статистика представляют лишь инструмент для изучения статистической зависимости, но не ставят своей целью установление причинной связи. Представления и гипотезы о причинной связи должны быть привнесены из некоторой другой теории, которая позволяет содержательно объяснить изучаемое явление.
Формально корреляционная
Математические модели строятся и используются для трех обобщенных целей:
• для объяснения;
• для предсказания;
• для управления.
Пользуясь методами корреляционно-регрессионного анализа, аналитики измеряют тесноту связей показателей с помощью коэффициента корреляции. При этом обнаруживаются связи, различные по силе (сильные, слабые, умеренные и др.) и различные по направлению (прямые, обратные). Если связи окажутся существенными, то целесообразно будет найти их математическое выражение в виде регрессионной модели и оценить статистическую значимость модели.
Регрессионный
анализ называют основным методом современной
математической статистики для выявления
неявных и завуалированных
Корреляционно-регрессионный
анализ и его возможности
Корреляционный
анализ является одним из методов
статистического анализа
Он определяется как метод, применяемый тогда, когда данные наблюдения можно считать случайными и выбранными из генеральной совокупности, распределенной по многомерному нормальному закону. Основная задача корреляционного анализа (являющаяся основной и в регрессионном анализе) состоит в оценке уравнения регрессии.
Корреляция
– это статистическая зависимость
между случайными величинами, не имеющими
строго функционального характера,
при которой изменение одной
из случайных величин приводит к
изменению математического