Автор работы: Пользователь скрыл имя, 01 Апреля 2012 в 21:51, контрольная работа
Предметом изучения дисциплины являются количественные характеристики экономических процессов, протекающих в промышленном производстве, изучение их взаимосвязей на основе экономико-математических методов и моделей. Эти модели линейного и нелинейного программирования, модели исследования операций, модели массового обслуживания.
Важное место отводится экономико-математическим моделям в ценообразовании. Особое внимание уделяется методам и моделям прогнозирования конъюнктуры рынка и определения цен, моделям и методам анализа инвестиционных проектов, моделям в управлении финансами.
Немалое место отводится моделям оптимального отраслевого и регионального регулирования - экономико-математическим моделям проекта развития отдельных отраслей промышленности. Это такие важные модели, как вариантная, транспортно-производственная, модель расчета топливного баланса региона.
Основным понятием является понятие математической модели. В общем случае слово модель - это отражение реального объекта. Такое отражение объекта может быть представлено схемой, эскизом, фотографией, моделью описательного характера в виде графиков и таблиц и т.д. Математическая модель - это система математических уравнений, неравенств, формул и различных математических выражений, описывающих реальный объект, составляющие его характеристики и взаимосвязи между ними. Процесс построения математической модели называют математическим моделированием. Моделирование и построение математической модели экономического объекта позволяют свести экономический анализ производственных процессов к математическому анализу и принятию эффективных решений.
Поскольку нами изучаются экономические задачи, то и строятся экономико-математические модели, включающие:
1) выбор некоторого числа переменных величин для формализации модели объекта;
2) информационную базу данных объекта;
3) выражение взаимосвязей, характеризующих объект, в виде уравнений и неравенств;
4) выбор критерия эффективности и выражение его в виде математического соотношения - целевой функции.
Итак, для принятия эффективных решений в планировании и управлении производством необходимо экономическую сущность исследуемого экономического объекта формализовать экономико-математической моделью, т.е. экономическую задачу представить математически в виде уравнений, неравенств и целевой функции на экстремум (максимум или минимум) при выполнении всех условий на ограничения и переменные.
«Экономико-математические методы и прикладные модели»
Выполнила студентка 3-го курса
(ускоренный)
Ющак Е.В.
Преподаватель Манцев А.П.
г. Москва, 2002
I. Введение.
Предметом изучения дисциплины являются
количественные характеристики экономических
процессов, протекающих в промышленном
производстве, изучение их взаимосвязей
на основе экономико-математических методов
и моделей. Эти модели линейного
и нелинейного
Важное место отводится
Немалое место отводится моделям оптимального отраслевого и регионального регулирования - экономико-математическим моделям проекта развития отдельных отраслей промышленности. Это такие важные модели, как вариантная, транспортно-производственная, модель расчета топливного баланса региона.
Основным понятием является понятие математической модели. В общем случае слово модель - это отражение реального объекта. Такое отражение объекта может быть представлено схемой, эскизом, фотографией, моделью описательного характера в виде графиков и таблиц и т.д. Математическая модель - это система математических уравнений, неравенств, формул и различных математических выражений, описывающих реальный объект, составляющие его характеристики и взаимосвязи между ними. Процесс построения математической модели называют математическим моделированием. Моделирование и построение математической модели экономического объекта позволяют свести экономический анализ производственных процессов к математическому анализу и принятию эффективных решений.
Поскольку нами изучаются экономические задачи, то и строятся экономико-математические модели, включающие:
1) выбор некоторого числа
2) информационную базу данных объекта;
3) выражение взаимосвязей, характеризующих объект, в виде уравнений и неравенств;
4) выбор критерия эффективности
и выражение его в виде
Итак, для принятия эффективных
решений в планировании и управлении
производством необходимо экономическую
сущность исследуемого экономического
объекта формализовать
II. Основные понятия
2.1. Общие понятия и определение модели.
Содержанием любой экономико-математической
модели является выраженная в формально-математических
соотношениях экономическая сущность
условий задачи и поставленной цели.
В модели экономическая величина
представляется математическим соотношением,
но не всегда математическое соотношение
является экономическим. Описание экономических
условий математическими
По содержанию различают экономико-
Система ограничений состоит из отдельных математических уравнений или неравенств, называемых балансовыми уравнениями или неравенствами.
Целевая функция связывает между собой различные величины модели. Как правило, в качестве цели выбирается экономический показатель (прибыль, рентабельность, себестоимость, валовая продукция и т.д.). Поэтому целевую функцию иногда называют экономической, критериальной. Целевая функция - функция многих переменных величин и может иметь свободный член.
Критерии оптимальности - экономический
показатель, выражающийся при помощи
целевой функции через другие
экономические показатели. Одному и
тому же критерию оптимальности могут
соответствовать несколько
Решением экономико-
Если экономико-математическая модель задачи линейна, то оптимальный план достигается в крайней точке области изменения переменных величин системы ограничений. В случае нелинейной модели оптимальных планов и оптимальных значений целевой функции может быть несколько. Поэтому необходимо определять экстремальные планы и экстремальные значения целевой функции. План, для которого целевая функция модели имеет экстремальное значение, называют экстремальным планом, или экстремальным решением.
Для нелинейных моделей иногда существуют экстремальные значения целевой функции, а для линейных моделей экстремальных планов и экстремальных значений целевой функции быть не может.
Таким образом, для принятия оптимального решения любой экономической задачи необходимо построить ее экономико-математическую модель, по структуре включающую в себе систему ограничений, целевую функцию, критерий оптимальности и решение.
Методика построения экономико-математической модели состоит в том, чтобы экономическую сущность задачи представить математически, используя различные символы, переменные и постоянные величины, индексы и другие обозначения.
Все условия задачи необходимо записать в виде уравнений или неравенств. Поэтому, в первую очередь необходимо определить систему переменных величин, которые могут для конкретной задачи обозначить искомый объем производства продукции на предприятии, количество перевозимого груза поставщиками конкретным потребителям.
2.2. Постановка задач оптимизации
В общем виде задача оптимизации, или задача определения экстремума, ставится следующим образом.
Пусть заданы:
функция f(X), определенная на множестве RN ;
множество D RN.
Найти точку Y = (y1, y2,..., yN) D, в которой функция f (X) достигает экстремального (минимального или максимального) значения, т.е.
f(X) = extr f(X) и Y D.
Функция f(X) называется целевой функцией, переменные X - управляемыми переменными, D - допустимым множеством и любой набор значений Y управляемых переменных, принадлежащий D (Y D), - допустимым решением задачи оптимизации.
Понятно, что искомая точка Y, в которой f(X) достигает своего экстремума, должна принадлежать пересечению области определения O функции f(X) и допустимого множества D (Y O D). Если множества O и D совпадают со всем пространством RN (O = D = RN), то такая задача называется задачей на безусловный экстремум. Если хотя бы одно из множеств O или D является собственным подмножеством пространства RN (O RN , D RN) или множества O и D пересекаются (O D ), то такая задача называется задачей на условный экстремум, в противном случае (O D = ) точка экстремума Y не существует. Подчеркнем один частный случай: если множества O и D пересекаются в одной точке Y, то эта точка Y является единственным допустимым решением.
Обычно в задаче условного экстремума задается не само допустимое множество решений D, а система соотношений, его определяющая,
j (x1, х 2, х N) (=, ) 0, j = 1, 2, … М,
т.е.
D = X: j (X) (=, ) 0, j = 1, 2, ... , M RN,
или множество D может одновременно задаваться как в явном виде, т.е. допустимое решение Х должно принадлежать некоторой области P RN, так и системой ограничений.
III. Методы линейного программирования.
3.1. Общая и типовая задача в линейном программировании.
Оптимизационная задача - это экономико-математическая задача, которая состоит в нахождении оптимального (максимального или минимального) значения целевой функции, причем значения переменных должны принадлежать некоторой области допустимых значений.
В самом общем виде задача математически записывается так:
U = f(X) max; X W,
Где X = (Х1, Х2,…, Хn);
W - область допустимых значений переменных Х1, Х2,…, Хn;
f(X) - целевая функция.
Для того, чтобы решить задачу оптимизации, достаточно найти ее оптимальное решение, т.е. указать X() W такое, что f(X()) f(X), при любом X W, или для случая минимизации - что f(X()) ? f(X), при любом X W.
Оптимизационная задача является неразрешимой, если она не имеет оптимального решения. В частности, задача максимизации будет неразрешима, если целевая функция f(X) не ограничена сверху на допустимом множестве W.
Методы решения
В математическом программировании принято выделять следующие основные задачи в зависимости от вида целевой функции f(X) и от области W:
· задачи линейного программирования, если f(X) и W линейны;
· задачи целочисленного программирования, если ставится условие целочисленности переменных Х1, Х2,…, Хn;
· задачи нелинейного программирования, если форма f(X) носит нелинейный характер.
Задачи линейного программирования.
Задачей линейного программирования называется задача исследования операций, математическая модель которой имеет вид:
f(X) = СjXj max(min);
aij xj = bi, iI, IM = 1, 2,…m;
aij xj bi, iM;
Xj0, jJ, JN = 1, 2,…n.
При этом система линейных уравнений и неравенств, определяющая допустимое множество решений задачи W, называется системой ограничений задачи линейного программирования, а линейная функция f(X) называется целевой функцией или критерием оптимальности.
Любую задачу линейного программирования
можно свести к задаче линейного
программирования в канонической форме.
Для этого в общем случае нужно
уметь сводить задачу максимизации
к задаче минимизации; переходить от
ограничений неравенств к ограничениям
равенств и заменять переменные, которые
не подчиняются условию
Правило приведения задачи линейного программирования к каноническому виду состоит в следующем:
1) если в исходной задаче
2) если в ограничениях правая часть отрицательна, то следует умножить это ограничение на -1;
3) если среди ограничений
4) если некоторая переменная
Хk не имеет ограничений по
знаку, то она заменяется (в
целевой функции и во всех
ограничениях) разностью между двумя
новыми неотрицательными
Xk = X`k - Xl, где l - свободный индекс, X`k 0, Xk 0.
3.2. Постановка задачи линейного программирования
Под термином «транспортные задачи» понимается широкий круг задач не только транспортного характера. Общим для них является, как правило, распределение ресурсов, находящихся у m производителей (поставщиков), но n потребителям этих ресурсов.
На автомобильном транспорте часто встречаются следующие задачи, относящиеся к транспортным:
· прикрепление потребителей ресурса к производителям;
· привязка пунктов отправления к пунктам назначения;
· взаимная привязка грузопотоков прямого и обратного направлений;
· отдельные задачи оптимальной загрузки промышленного оборудования;
· оптимальное распределение
Транспортным задачам присущи следующие особенности:
· распределению подлежат однородные ресурсы;
· условия задачи описываются только уравнениями;
· все переменные выражаются в одинаковых единицах измерения;
· во всех уравнениях коэффициенты при неизвестных равны единице;
· каждая неизвестная встречается только в двух уравнениях системы ограничений.
Транспортные задачи могут решаться симплекс-методом.
3.3. Решение транспортной задачи
Мощности постав- щиков 140 |
Мощности потребителей |
U i |
|||||
18 |
15 |
32 |
45 |
30 |
|||
30 |
10 |
7/15 |
14 |
8/5 |
7/10 |
0 |
|
40 |
12 |
8 |
10 |
8/40 |
15 |
0 |
|
25 |
6/18 |
10 |
10 |
12 |
14/7 |
-7 |
|
45 |
16 |
10 |
8/32 |
12 |
16/13 |
-9 |
|
Vj |
-1 |
7 |
-1 |
8 |
7 |
||
Информация о работе Экономико-математические методы и прикладные модели