Автор работы: Пользователь скрыл имя, 01 Апреля 2012 в 21:51, контрольная работа
Предметом изучения дисциплины являются количественные характеристики экономических процессов, протекающих в промышленном производстве, изучение их взаимосвязей на основе экономико-математических методов и моделей. Эти модели линейного и нелинейного программирования, модели исследования операций, модели массового обслуживания.
Важное место отводится экономико-математическим моделям в ценообразовании. Особое внимание уделяется методам и моделям прогнозирования конъюнктуры рынка и определения цен, моделям и методам анализа инвестиционных проектов, моделям в управлении финансами.
Немалое место отводится моделям оптимального отраслевого и регионального регулирования - экономико-математическим моделям проекта развития отдельных отраслей промышленности. Это такие важные модели, как вариантная, транспортно-производственная, модель расчета топливного баланса региона.
Основным понятием является понятие математической модели. В общем случае слово модель - это отражение реального объекта. Такое отражение объекта может быть представлено схемой, эскизом, фотографией, моделью описательного характера в виде графиков и таблиц и т.д. Математическая модель - это система математических уравнений, неравенств, формул и различных математических выражений, описывающих реальный объект, составляющие его характеристики и взаимосвязи между ними. Процесс построения математической модели называют математическим моделированием. Моделирование и построение математической модели экономического объекта позволяют свести экономический анализ производственных процессов к математическому анализу и принятию эффективных решений.
Поскольку нами изучаются экономические задачи, то и строятся экономико-математические модели, включающие:
1) выбор некоторого числа переменных величин для формализации модели объекта;
2) информационную базу данных объекта;
3) выражение взаимосвязей, характеризующих объект, в виде уравнений и неравенств;
4) выбор критерия эффективности и выражение его в виде математического соотношения - целевой функции.
Итак, для принятия эффективных решений в планировании и управлении производством необходимо экономическую сущность исследуемого экономического объекта формализовать экономико-математической моделью, т.е. экономическую задачу представить математически в виде уравнений, неравенств и целевой функции на экстремум (максимум или минимум) при выполнении всех условий на ограничения и переменные.
- Так продолжается до первого
шага, но поскольку первый шаг
не имеет предыдущего, то
- Второй круг оптимизации
Имея для всех шагов после
него условное оптимальное управление,
мы знаем ,что необходимо делать на
каждом последующем шаге. Это дает
нам возможность
Пусть имеется m типов различных грузов, которыми необходимо загрузить транспортное средство таким образом, чтобы общая ценность груза W была максимальной. Ценность груза является функцией отгрузоподъемности транспортного средства:
W = f (G)
Известны массы грузов i-го типа Рi и их стоимости Ci.
Необходимо загрузить
W = fm(G) = max xiCi,
где xi - число предметов груза i-го типа, загружаемых в транспортное средство; xi выступает здесь в качестве управления (Ui=xi)
Ограничивающими условиями являются:
xi Pi G
xi = 0, 1, 2...
Первое условие требует, чтобы общая масса груза не превышала грузоподъемности транспортного средства, а второе - чтобы предметы, составляющие груз различных типов, были неделимы.
Понятие критерия оптимальности
Формулировка критериев
Критерий оптимальности обычно носит количественный характер и показывает, насколько один из вариантов лучше ли хуже другого. Порядковый критерий определяет лишь то, что один вариант лучше или хуже другого. Математической формой критерия оптимальности в экономико-математических моделях является целевая функция, экстремальное значение которой характеризует предельно допустимую эффективность деятельности моделируемого объекта.
Если за классифицирующий признак
принять уровень общности, то для
экономической системы
Если за классифицирующий признак взять математическую формулировку, то критерии подразделяются на скалярные и векторные, аддитивные и мультипликативные, интегральные критерии во временном аспекте и интегральные в пространственном аспекте и др.
Возможна классификация
Сущность глобального и локального критериев оптимальности.
Чаще всего термин «глобальный» применяется либо по отношению к критерию одноуровневой модели, либо по отношению к критерию «верхней» модели многоуровневой системы моделей. В последнем случае, наряду с глобальным, фигурируют локальные критерии моделей нижних уровней, отражающие интересы отдельных хозяйственных звеньев, социальных групп.
Разделение критериев на глобальный и локальный может быть отнесено к любой иерархически построенной системе моделей, например модели отрасли или предприятия.
Глобальному критерию может быть дана словесная формулировка, а для решения практических задач планирования и управления такая формулировка детализируется и представляется в виде совокупности более конкретных локальных критериев. Математически глобальный критерий принято формулировать в виде скалярной целевой функции, которая обобщенно выражает все многообразие целей или в виде векторной функции, представляющей собой набор несводимых друг к другу частных целевых функций.
Большинство многоуровневых систем имеют
два уровня: верхний и нижний.
Система моделей
Сложность системы целей объясняется
многообразием задач
Предприятие является элементом более
общих систем: отрасли промышленности,
эк5ономического региона. Поэтому деятельность
предприятия оценивается в
Система критериев отраслевой системы включает удовлетворение общественных потребностей производимой продукции, экономию ресурсов, внедрение достижений научно-технического прогресса, обеспечение надежности выполнения плановых заданий. Внешние связи отраслевых систем, а значит, и комплексы их целей, усложняются фактором времени, пространственной организацией, сочетанием различных подходов и аспектов планирования.
Множественность целей развития систем
существенно осложняет
Векторная оптимизация
Математическая формулировка задачи векторной оптимизации:
Пусть X = x1,…, x N (j = 1,N) - вектор переменных, обычно предполагается неотрицательность вектора переменных X0, функциональная взаимосвязь переменных устанавливается определенными соотношениями, на которые накладываются ограничения:
gi (X)bi (i = 1,M).
Функционирование системы
F(X) = f1(X),…>fr(X).
Чтобы минимизировать частный критерий fr(X), достаточно максимизировать -fr(X), так как min fr(X)=-max (-fr(X)). Поэтому в дальнейшем предполагается, что каждая компонента векторного критерия максимизируется. Задача многоцелевой оптимизации записывается как векторная задача математического программирования (ВЗМП)
F(X) = f1(X),…>fr(X) (max),
gi (X)bi (i = 1,M),
X0.
Будем рассматривать ВЗМП для случая, когда точки оптимума X*r(r=1,K), полученные при решении задачи по каждому критерию fr(r=1,K) не совпадают (случай их совпадения встречается крайне редко и такая задача не представляет интереса). Поэтому с математической точки зрения задача является некорректной, так как если один из критериев достигает своего оптимума, то улучшение по другим компонентам векторного критерия невозможно. Отсюда вытекает, что решением ВЗМП может быть только какое-то компромиссное решение.
Особенностью задач векторной
оптимизации является наличие в
области допустимых значений области
компромиссов, в которой невозможно
одновременное улучшение всех критериев.
Принадлежащие области
Понятие предпочтительности плана. План X не хуже плана X`, если
fr(X) fr(X`) (r = 1,K). Если среди этих
неравенств хотя бы одно
К общей формулировке многокритериальной задачи могут сводиться задачи различного содержания, которые можно подразделить на четыре типа.
1. Задачи оптимизации на
2. Задачи оптимизации на
3. Задачи оптимизации на
4. Задачи оптимизации на
Многокритериальные задачи можно
также классифицировать по другим признакам:
по вариантам оптимизации, по числу
критериев, по типам критериев, по соотношениям
между критериями, по уровню структуризации,
наличию фактора
При разработке методов решения векторных задач приходится решать ряд специфических проблем.
Проблема нормализации возникает в связи с тем, что локальные критерии имеют, как правило, различные единицы и масштабы измерения, и это делает невозможным их непосредственное сравнение. Операция приведения критериев к единому масштабу и безразмерному виду носит название нормирования. Наиболее распространенными способами нормирования является замена абсолютных значений критериев их безразмерными относительными величинами
fr(X) = fr(X) ,
f*r
или относительными значениями отклонений от оптимальных значений критериев f*r
fr(X) = f*r - fr(X) ,
f*r
Проблема выбора принципа оптимальности
связана с определением свойств
оптимального решения и решением
вопроса - в каком смысле оптимальное
решение превосходит все
Проблема учета приоритета критериев встает, если локальные критерии имеют различную значимость. Необходимо найти математическое определение приоритета и степень его влияния на решение задачи.
Проблема вычисления оптимума возникает, если традиционные вычислительные схемы и алгоритмы непригодны для решения задач векторной оптимизации.
Решение перечисленных проблем идет в нескольких направлениях. Основные направления:
Методы, основанные на свертывании критериев в единый;
Методы, использующие ограничения на критерии;
Методы целевого программирования;
Методы, основанные на отыскании компромиссного решения;
Методы, в основе которых лежат
человеко-машинные процедуры принятия
решений (интерактивное
В методах, основанных на свертывании
критериев, из локальных критериев
формируется один. Наиболее распространенным
является метода линейной комбинации
частных критериев. Пусть задан
вектор весовых коэффициентов
F = rfr(X) (max),
qi(X) bi (I = 1,M),
X 0.
Критерии в свертке могут быть нормированы. Решение, полученное в результате оптимизации скаляризованного критерия эффективно.
К недостаткам метода можно отнести
то, что малым приращениям
Направление методов, использующих ограничения на критерии включает два подхода:
Информация о работе Экономико-математические методы и прикладные модели