Компонентный и факторный анализ

Автор работы: Пользователь скрыл имя, 24 Декабря 2012 в 17:13, курсовая работа

Описание

Наличие множества исходных признаков, характеризующих процесс функционирования объектов, заставляет отбирать из них наиболее существенные и изучать меньший набор показателей. Чаще исходные признаки подвергаются некоторому преобразованию, кото-рое обеспечивает минимальную потерю информации. Такое решение может быть обеспечено методами снижения размерности, куда относят факторный и компонентный анализ. Эти методы позволяют учитывать эффект существенной многомерности данных, дают возможность лако-ничного или более простого объяснения многомерных структур. Они вскрывают объективно существующие, непосредственно не наблюдае-мые закономерности при помощи полученных факторов или главных компонент. Они дают возможность достаточно просто и точно описать наблюдаемые исходные данные, структуру и характер взаимосвязей между ними. Сжатие информации получается за счет того, что число факторов или главных компонент – новых единиц измерения – исполь-зуется значительно меньше, чем было исходных признаков.

Содержание

Задание……………………………………………………………………………3
Введение……………………………………………………………………….….4
1 Исследование на мультиколлинеарность……………………………..……5
2 Метод главных компонент………………………………………………..….7
2.1 Вычисление главных компонент……………………………………….…7
2.2 Экономическая интерпретация полученных главных компонент…..…12
2.3 Матрица наблюденных значений главных компонент……………...….12
2.4 Классификация объектов…………………………………………………13
2.5 Уравнение регрессии на главные компоненты………………………….13
3 Факторный анализ………………………………...…………………………15
3.1 Преобразование матрицы парных коэффициентов корреляции в редуцированную матрицу, получение матрицы факторных нагрузок и экономическая интерпретация ………………………………………………..…...16
3.2 Графическая классификация объектов по двум общим факторам…….19
3.3 Переход к обобщенным факторам с помощью варимаксного
вращения ……………………………………………………………………...19
3.4 Построение функции регрессии на выделенные общие факторы…......21
Список использованной литературы………………………………………...22
Приложения………………………………………………………..………...…23

Работа состоит из  1 файл

Курсовая - Многомерные статистические методы.doc

— 658.50 Кб (Скачать документ)

 

Т=

Известно, что sin15 =0.259 cos15 =0.966. Найдем матрицу В=Т*А

* =

Рассчитаем Vj для матрицы В , полученной после вращения: V1=0,240, Vj=0,156. Значение Vj не возросло ни по одному из факторов.

Попытки производить  вращения на другие углы не приводят к  возрастанию значения  Vj следовательно нет необходимости во вращении.

 

3.4 Построение функции  регрессии на выделенные обобщенные  факторы

 

  Используя данные  о «наблюденных» значениях общих  факторов, построим функцию регрессии  на выделенные обобщенные факторы с помощью программы «Stadia».Получим уравнение регрессии следующего вида для i-го объекта наблюдения:

 

  Подробное описание  уравнения регрессии дано в  Приложениях

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Список использованных источников

1 Дубров А.М., Мхитарян  В.С., Трошин Л.И. Многомерные статистические методы: Учебник. – М.: Финансы и статистика,1998.- 352с.

2 Сошникова Л.А., Тамашевич  В.Н., Уебе Г., Шефер М. Многомерный  статистический анализ в экономике: Учебное пособие для вузов- М.:ЮНИТИ-ДАНА, 1999.-598 с.

 

Приложение 1

Наблюденные значения исходных признаков

Y1

X5

X6

X7

X9

X17

9,26

0,78

0,4

1,37

0,23

17,72

9,38

0,75

0,26

1,49

0,39

18,39

12,11

0,68

0,4

1,44

0,43

26,46

10,81

0,7

0,5

1,42

0,18

22,37

9,35

0,62

0,4

1,35

0,15

28,13

9,87

0,76

0,19

1,39

0,34

17,55

9,17

0,73

0,25

1,16

0,38

21,92

9,12

0,71

0,44

1,27

0,09

19,52

5,88

0,69

0,17

1,16

0,14

23,99

6,3

0,73

0,39

1,25

0,21

21,76

6,22

0,68

0,33

1,13

0,42

25,68

5,49

0,74

0,25

1,1

0,05

18,13

6,5

0,66

0,32

1,15

0,29

25,74

6,61

0,72

0,02

1,23

0,48

21,21

4,32

0,68

0,06

1,39

0,41

22,97

7,37

0,77

0,15

1,38

0,62

16,38

7,02

0,78

0,08

1,35

0,56

13,21

8,25

0,78

0,2

1,42

1,76

14,48

8,15

0,81

0,2

1,37

1,31

13,38

8,72

0,79

0,3

1,41

0,45

13,69

6,64

0,77

0,24

1,35

0,5

16,66

8,1

0,78

0,1

1,48

0,77

15,06

5,52

0,72

0,11

1,24

1,2

20,09

9,37

0,79

0,47

1,4

0,21

15,98

13,17

0,77

0,53

1,45

0,25

18,27

6,67

0,8

0,34

1,4

0,15

14,42

5,68

0,71

0,2

1,28

0,66

22,76

5,22

0,79

0,24

1,33

0,74

15,41

10,02

0,76

0,54

1,22

0,32

19,35

8,16

0,78

0,4

1,28

0,89

16,83

3,78

0,62

0,2

1,47

0,23

30,53

6,48

0,75

0,64

1,27

0,32

17,98

10,44

0,71

0,42

1,51

0,54

22,09

7,65

0,74

0,27

1,46

0,75

18,29

8,77

0,65

0,37

1,27

0,16

26,05

7

0,66

0,38

1,43

0,24

26,2

11,06

0,84

0,35

1,5

0,59

17,26

9,02

0,74

0,42

1,35

0,56

18,83

13,28

0,75

0,32

1,41

0,63

19,7

9,27

0,75

0,33

1,47

1,1

16,87

6,7

0,79

0,29

1,35

0,39

14,63

6,69

0,72

0,3

1,4

0,73

22,17

9,42

0,7

0,56

1,2

0,28

22,62

7,24

0,66

0,42

1,15

0,1

26,44

5,39

0,69

0,26

1,09

0,68

22,26

5,61

0,71

0,16

1,26

0,87

19,13

5,59

0,73

0,45

1,36

0,49

18,28

6,57

0,65

0,31

1,15

0,16

28,23

6,54

0,82

0,08

1,87

0,85

12,39

4,23

0,8

0,68

1,17

0,13

11,64

5,22

0,83

0,03

1,61

0,49

8,62

18

0,7

0,02

1,34

0,09

20,1

11,03

0,74

0,22

1,22

0,79

19,41


 

f1

f2

f3

1

0.465

0.513

-0.722

2

0.521

-0.576

-0.18

3

-0.918

-0.263

-0.119

4

-0.53

0.434

-0.672

5

-1.703

-0.315

0.16

6

0.527

-0.593

0.05

7

-0.574

0.059

0.243

8

-0.455

0.651

-0.508

9

-1.005

-0.546

0.676

10

-0.495

0.48

-0.315

11

-1.401

0.233

0.292

12

-0.293

0.333

0.082

13

-1.516

0.049

0.366

14

-0.277

-1.222

0.996

15

-0.456

-1.647

0.942

16

0.722

-0.662

0.164

17

1.067

-0.793

0.279

18

1.029

-0.334

0.062

19

1.246

-0.106

-0.118

20

1.05

0.109

-0.534

21

0.569

-0.175

-0.127

22

1.149

-1.072

0.215

23

-0.212

-0.722

0.771

24

0.698

0.853

-1.066

25

0.399

0.874

-1.153

26

1.007

0.311

-0.723

27

-0.523

-0.562

0.473

28

0.797

6.03E-3

-0.184

29

-0.225

1.458

-0.957

30

0.382

0.833

-0.584

31

-1.525

-1.642

0.833

32

-0.161

1.809

-1.328

33

-0.185

-0.104

-0.45

34

0.395

-0.45

-0.103

35

-1.426

-0.081

0.145

36

-1.057

-0.412

-0.012

37

1.263

0.194

-0.811

38

0.016

0.516

-0.546

39

0.211

-0.1

-0.251

40

0.576

-0.082

-0.332

41

1.703

3.644

5.731

42

-0.235

-0.339

0.019

43

-1.023

1.293

-0.705

44

-1.656

0.487

0.022

45

-1.047

0.164

0.457

46

-0.211

-0.573

0.546

47

-0.017

0.608

-0.645

48

-1.804

-0.119

0.487

49

2.464

-1.953

-0.182

50

0.543

2.607

-1.793

51

2.391

-1.4

-0.05

52

-0.127

-1.581

0.901

53

-0.131

-0.094

0.26




Приложение 2

Приложение 2

Главные

компоненты

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Приложение 3

Построение уравнения регрессии  на главные компоненты.

ПОШАГОВАЯ РЕГРЕССИЯ.  Файл: гл.комп.std

Пропущн=2 2

 

Переменная   Среднее  Ст.отклон.

       f1  3,77E-5        1

       f2  5,66E-7        1

       f3  3,77E-5        1

        Y     7,97     2,61

 

                    Корреляционная матрица

                f1       f2       f3        Y                          

       f2        0

       f3   -0,001        0

        Y    0,044    0,009   -0,167

 

 Критичeское значение=0,57

 Число значимых  коэффициентов=0 (0%)

 

    *** Метод включения.  Шаг No.1, введена переменная:f3

 

  Коэфф.       a0       a1

Значение     7,97   -0,437

Ст.ошиб.    0,357     0,36

 Значим.        0    0,229

 

Источник  Сум.квадр. Степ.св Средн.квадр.

Регресс.     9,92        1     9,92

Остаточн      344       51     6,75

     Вся      354       52

 

Множеств R     R^2  R^2прив  Ст.ошиб.       F   Значим

  0,16732 0,0279970,0089386   2,5985     1,47    0,144

   Гипотеза 0: <Регрессионная  модель неадекватна экспериментальным  данным>

 

Измен.R^2        F   Значим

    0,028     1,47    0,229

 

--------------  Переменные  в уравнении ---------------

 Переменн. Коэфф.В   Ст.ош.В     Бета        F   Значим

       f3   -0,437     0,36   -0,167     1,47    0,229

 

------------------ Переменные  не в уравнении ---------------------------

 Переменн. Коэфф.В   Ст.ош.В     Бета        F   Значим  Частн.R    Толер.

       f2   0,0241    0,364  0,00922  0,00438    0,946  0,00935        1

       f1    0,116    0,364   0,0446    0,102    0,749   0,0452        1

 

Приложение 4

«Наблюденные» значения  общих факторов.

f1

f2

f3

1

0.745

янв.23

1.313

2

0.734

-0.836

0.704

3

-0.238

0.527

0.758

4

0.318

1.969

1.578

5

-1.211

0.409

0.318

6

0.232

-1.468

0.097

7

-1.22

-0.515

-0.57

8

-0.25

1.614

0.959

9

-1.849

-1.743

-1.129

10

-0.476

01.апр

0.564

11

-1.789

0.264

-0.56

12

-1.179

-0.298

-0.439

13

-1.87

0.016

-0.572

14

-1.44

-3.51

-1.681

15

-1.009

-3.509

-1.145

16

0.266

-1.837

-0.201

17

0.259

-2.529

-0.505

18

0.857

-1.027

-0.204

19

0.878

-0.868

-6.854E-3

20

1.076

0.101

0.966

21

0.307

-0.685

0.247

22

0.791

-2.553

-0.15

23

-1.051

-2.264

-1.434

24

1.241

2.131

1.901

25

1.312

2.653

2.214

26

1.117

0.583

1.302

27

-0.957

-1.415

-0.703

28

0.459

-0.507

0.197

29

0.122

3.157

1.449

30

0.437

1.527

0.772

31

-1.286

-2.376

-0.534

32

0.618

апр.32

2.167

33

0.666

0.896

1.303

34

0.582

-0.631

0.472

35

-1.295

0.351

0.086

36

-0.463

0.212

0.634

37

1.705

0.623

1.523

38

0.366

1.402

1.025

39

0.423

0.057

0.635

40

0.965

0.228

0.766

41

3.449

май.79

-16.471

42

-0.049

-0.334

0.249

43

-0.578

мар.14

1.174

44

-1.702

1.212

0.04

45

-1.802

-0.354

-1.028

46

-0.864

-1.729

-0.953

47

0.449

1.732

1.235

48

-2.152

-0.24

-0.695

49

3.036

-3.314

1.159

50

1.037

5.343

2.573

51

2.026

-3.347

0.406

52

-1.012

-3.805

-1.202

53

-0.731

-0.83

-0.606


 

Приложение 5

Уравнение регрессии  на общие факторы.

МНОЖЕСТВЕННАЯ ЛИНЕЙНАЯ РЕГРЕССИЯ. 

 

  Коэфф.       a0       a1       a2       a3

Значение     7,97    0,309   0,0722    0,186

Ст.ошиб.    0,359    0,309    0,177    0,145

 Значим.        0    0,323    0,688    0,204

 

Источник  Сум.квадр. Степ.св Средн.квадр.

Регресс.     19,3        3     6,43

Остаточн      335       49     6,84

     Вся      354       52

 

Множеств R     R^2  R^2прив  Ст.ошиб.       F   Значим

   0,2333 0,054428-0,0034647   2,6147     0,94     0,57

   Гипотеза 0: <Регрессионная  модель неадекватна экспериментальным  данным>

 


Информация о работе Компонентный и факторный анализ