Автор работы: Пользователь скрыл имя, 19 Декабря 2011 в 13:55, контрольная работа
Задача № 1. Решить графическим методом типовую задачу оптимизации.
Задача № 2. Использовать аппарат теории двойственности для экономико-математического анализа оптимального плана задачи линейного программирования.
Задача № 1……………………….…………………………………………..3
Задача № 2…………………...………………………………………………6
Задача № 3 …………………………………………………………………10
Задача № 4 …………………………………………………………………14
ЛАБОРАТОРНАЯ РАБОТА………………………………………...……20
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ………………………32
СОДЕРЖАНИЕ
Задача № 1……………………….…………………………………………..3
Задача № 2…………………...………………………………………………6
Задача № 3 …………………………………………………………………10
Задача № 4 …………………………………………………………………14
ЛАБОРАТОРНАЯ РАБОТА………………………………………...……20
СПИСОК
ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ………………………32
Задача
№ 1. Решить графическим
методом типовую задачу
оптимизации.
Инвестор, располагающий суммой в 300 тыс. ден. ед., может вложить свой капитал в акции автомобильного концерна А и строительного предприятия В. Чтобы уменьшить риск, акций А должно быть приобретено на сумму по крайней мере в два раза большую, чем акций В, причем последних можно купить не более чем на 100 тыс. ден. ед.
Дивиденды по акциям А составляют 8% в год,
по акциям В — 10%. Какую максимальную прибыль
можно получить в первый год? Построить
экономико-математическую модель задачи,
дать необходимые комментарии к ее элементам
и получить решение графическим методом.
Что произойдет, если решать задачу на
минимум и почему?
Решение
Введем обозначения:
х1 — инвестиции в акции концерна А.
х2 — инвестиции в акции строительного предприятия В.
Экономико-математическая модель задачи будет иметь вид:
Построим ОДР задачи:
Прямые ограничения означают, что область решений будет лежать в первой четверти Декартовой системы координат.
Функциональные ограничения определяют область, являющуюся пересечением нижних полуплоскостей с граничными прямыми:
I. (0;300) (300;0)
т.(0;0) – входит в ОДР;
II. (200; 100), (0;0).
т.(1;0) – входит в ОДР;
III. (0;100) прямая параллельная оси ОХ.
т.(0;0) – входит в ОДР.
Рисунок № 1.
Пересечение указанных полуплоскостей в первой четверти представляет собой треугольник АВСО (заштрихованная общая область для всех ограничений задачи ОДР).
Для определения направления движения к оптимуму построим вектор-градиент, соединив его вершину Ñ (0,08;0,1) с началом координат О (0;0).
Построим некоторую линию уровня 0,08х1+0,1х2=а.
Пусть, например, а = 0
(0;0) (100;-80)
Такой линии уровня отвечает прямая ОХ, перпендикулярная вектору-градиенту.
При максимизации ЦФ необходимо перемещать линию уровня ОХ в направлении вектора-градиента, а при минимизации – в противоположном направлении. Предельными точками при таком движении линии уровня ОХ являются соответственно точка В (максимум) и точка О (минимум). Далее она выходит из ОДР.
Определим координаты точки В, являющейся точкой пересечения всех прямых:
х1 = 200;
Таким образом, ЦФ в ЗЛП принимает при х1 = 100; х2 = 200 максимальное значение, равное
f(х1,х2) = 0,08 х 100 + 0,1 х 200 = 28
Задача № 2. Использовать аппарат теории двойственности для экономико-математического анализа оптимального плана задачи линейного программирования.
Для изготовления четырех видов продукции используют три вида сырья. Запасы сырья, нормы его расхода и цены реализации единицы каждого вида продукции приведены в таблице:
Тип сырья | Нормы расхода сырья на одно изделие | Запасы сырья | |||
А | Б | В | Г | ||
I | 1 | 2 | 1 | 0 | 18 |
II | 1 | 1 | 2 | 1 | 30 |
III | 1 | 3 | 3 | 2 | 40 |
Цена изделия | 12 | 7 | 18 | 10 |
Таблица 1 «Сырьё»
Требуется:
1. Сформулировать прямую оптимизационную задачу на максимум
выручки от реализации готовой продукции, получить оптимальный план выпуска продукции.
2. Сформулировать двойственную задачу и найти ее оптимальный план с помощью теорем двойственности.
3. Пояснить нулевые значения переменных в оптимальном плане.
4. На основе свойств двойственных оценок и теорем двойственности:
- проанализировать использование ресурсов в оптимальном плане исходной задачи;
- определить, как изменятся выручка и план выпуска продукции при увеличении запасов сырья I и II видов на 4 и 3 единицы соответственно и уменьшении на 3 единицы сырья III вида;
- оценить целесообразность включения в план изделия Д ценой 10 ед., на изготовление которого расходуется по две единицы каждого вида сырья.
Решение
1. Обозначим через хj = 1-4 – количество продукции каждого вида и запишем математическую модель задачи критерию «максимум выручки от реализации готовой продукции»:
Оптимальный план задачи получен с помощью надстройки Excel Поиск решения:
Рисунок 2 «Поиск решения»
Оптимальный план: Х1=18, Х2=0, Х3=0, Х4=11
Проверим как удовлетворяет система функциональных ограничений оптимальным планом Х* = (х1 = 18, х2 = 0, х3 = 0, х4 = 11)
1 х 18 + 2 х 0 + 1 х 0 + 0 х 11 = 18
1 х 18 + 1 х 0 + 2 х 0 + 1 х 11 = 29 < 30
1 х 18 + 3 х 0 + 3 х 0 + 2 х 11 = 40
Значение целевой функции на этом плане равно:
f (X) = 12 х 18 + 7 х 0 + 18 х 0 + 10 х 11 = 326
2. Двойственная задача имеет вид:
min (18у1+30у2+40у3)
Для нахождения оценок (у1,у2,у3) используем вторую теорему двойственности.
Т.к. как 2-е ограничение выполняется как строгое неравенство, то у2=0.
Так как х1>0 и х4>0, то для получения двойственных оценок имеем систему линейных уравнений:
у2 = 0
у1 = 7, у2 = 0, у3 = 5.
Значение целевой функции составит:
min φ(Y) = 18 х 7 + 30 х 0 + 40 х 5 = 326
f(Х) = φ (Y) = 326
3. Нулевые значения х2, х3 обозначает то, что продукцию данного вида выпускать нецелесообразно.
4. Прирост объемов сырья первого типа на единицу дает приращение стоимости на 7 у.е., третьего типа – на 5 у.е., второго типа – не приведет к изменению стоимости. Недефицитным является сырье второго типа. Острее ощущается дефицит сырья первого типа, чем третьего.
Так как изменение сырья II вида не приведет к изменению стоимости получим:
Х = (х1 = 22, х2 = 0,х3 = 0, х4 = 15)
Соответственно выручка увеличится на 78 у.е. и составит 404 у.е.
Изделие «» в план включать невыгодно, т.к. 7 х 2 + 0 х 2 + 5 х 2 – 10 = 14 >0.
Промышленная группа предприятий (холдинг) выпускает продукцию трех видов, при этом каждое из трех предприятий группы специализируется на выпуске продукции одного вида: первое предприятие специализируется на выпуске продукции первого вида, второе предприятие — продукции второго вида; третье предприятие — продукции третьего вида.
Часть
выпускаемой продукции
Специалистами управляющей компании получены экономические оценки aij (i = 1,2,3; j = 1,2,3) элементов технологической матрицы А (норм расхода, коэффициентов прямых материальных затрат) и элементов yi вектора конечной продукции Y.
Вариант № | Для первой строки | Для второй строки | Для третьей строки | |||||||||
1А | 2А | ЗА | 4А | 1Б | 2Б | ЗБ | 4Б | 1В | 2В | 3В | 4В | |
1 | 0,1 | 0,2 | 0,1 | 200 | 0,2 | 0,1 | 0,0 | 150 | 0,0 | 0,2 | 0,1 | 250 |
Таблица 2 «Элементы матрицы»
Предприятия (виды продукции) | Коэффициенты прямых затрат aij | Конечный продукт Y | ||
1 | 2 | 3 | ||
1 | 1А | 2А | ЗА | 4А |
2 | 1Б | 2Б | ЗБ | 4Б |
3 | 1В | 2В | 3В | 4В |
Информация о работе Контрольная работа по "Экономико-математическому моделированию"