Автор работы: Пользователь скрыл имя, 06 Марта 2013 в 11:14, контрольная работа
Предприятие выпускает продукцию А, Б и В. Каждый вид продукции может производится различными технологическими способами (на разном оборудовании, с использованием различного сырья, при разной квалификации рабочих).
Ресурсы оборудования, сырья, труда ограничены.
(1)
Суммарное количество продукта, направляемого из каждого пункта отправления во все пункты назначения, должно быть равно запасу продукта в данном пункте. Формально это означает, что
, i 1, …, m (2)
Суммарное количество груза, доставляемого в каждый пункт назначения из всех пунктов отправления, должно быть равно потребности. Это условие полного удовлетворения спроса:
, j 1, …, n (3)
Объемы перевозок - неотрицательные числа, так как перевозки из пунктов потребления в пункты производства исключены:
xij 0, i 1, ..., m; j 1, ..., n (4)
Транспортная задача сводится, таким образом, к минимизации суммарных затрат при выполнении условий полного удовлетворения спроса и равенства вывозимого количества продукта запасам его в пунктах отправления.
Всякое неотрицательное
План X*=(x*ij)(i 1, …, m; j 1, ..., n), при котором функция принимает свое минимальное значение, называется оптимальным планом транспортной задачи.
Обычно исходные данные записываются в виде таблицы 1.
Таблица 1.
Пункты отправления |
Пункты назначения |
Запасы | ||||
В1 |
… |
Bj |
… |
Bn |
А1 | |
A1 |
C11 X11 |
… |
C1j X1j |
… |
C1n X1n |
a1 |
… |
… |
… |
… |
… |
… |
… |
Ai |
Ci1 Xi1 |
… |
Cij Xij |
… |
Cin Xin |
ai |
… |
… |
… |
… |
… |
… |
… |
Am |
Cm1 Xm1 |
… |
Cmj Xmj |
… |
Cmn Xmn |
am |
Потребности |
b1 |
… |
bj |
… |
bn |
Очевидно, общее наличие груза у поставщиков равно , а общая потребность в грузе в пунктах назначения равна единице. Если общая потребность в грузе в пунктах назначения равна запасу груза в пунктах отправления, т.е.
, (5)
то модель такой транспортной задачи называется закрытой.
В ряде случаев не требуется, чтобы весь произведенный продукт в каждом пункте производства был реализован. В таких случаях баланс производства и потребления может быть нарушен:
, i 1, ..., m.
Введение этого условия
Теорема 1.
Любая транспортная задача, у которой
суммарный объем запасов
Закрытая модель транспортной задачи
Для доказательства теоремы необходимо показать, что при заданных условиях существует хотя бы один план задачи и линейная функция на множестве планов ограничена.
Доказательство. Пусть = M > 0 .
Тогда величины xij = aibj
/M (i = 1,2,3, ... m; j = 1,2,3, ..., n)
( 2 ) и ( 3 ) .
Действительно, подставляя
= ai ,
= bj .
Выберем из значений Cij наибольшее C¢ = max Cij и заменим в линейной функции ( 1 ) все коэффициенты на C¢ тогда, учитывая ( 2 ) , получим
,
Выберем из значений Cij наименьшее C¢¢=min Cij и заменим в линейной функции все коэффициенты на C¢¢ ; тогда, учитывая ( 2 ) имеем
Объединяя два последних неравенства в одно двойное, окончательно получаем
C¢¢M ≤ Z ≤ C¢ M, т. е. линейная функция ограничена на множестве планов транспортной задачи.
Открытая модель транспортной задачи
Транспортная задача, в которой суммарные запасы и потребности не совпадают, т. е. не выполняется условие , называется открытой. Для открытой модели может быть два случая:
Линейная функция одинакова в обоих случаях, изменяется только вид системы ограничений.
Найти минимальное значение линейной функции
при ограничениях
, i = 1, 2, ..., m, (случай а)
, j = 1, 2, ..., n;
, i = 1, 2, ..., m, (случай б)
, j = 1, 2, ..., n,
xij ³ 0 (i = 1, 2, ..., m; j = 1, 2, ..., n).
Открытая модель решается приведением к закрытой модели.
В случае (а),
когда суммарные запасы
Стоимость перевозки единицы груза как фиктивного потребителя, так и стоимость перевозки единицы груза от фиктивного поставщика полагают равными нулю, так как груз в обоих случаях не перевозится.
После преобразований задача принимает вид закрытой модели и решается обычном способом. При равных стоимостях перевозки единицы груза от поставщиков к фиктивному потребителю затраты на перевозку груза реальным потребителям минимальны, а фиктивному потребителю будет направлен груз от наименее выгодных поставщиков. То же самое получаем и в отношении фиктивного поставщика.
Прежде чем решать какую-нибудь транспортную задачу, необходимо сначала проверить, к какой модели она принадлежит, и только после этого составить таблицу для ее решения.
Как и при решении задачи линейного программирования, симплексным методом, определение оптимального плана транспортной задачи начинают с нахождения какого-нибудь ее опорного плана.
Число переменных Xij в транспортной задаче с m пунктами отправления и n пунктами назначения равно nm, а число уравнений в системах (2) и (3) равно n+m. Так как мы предполагаем, что выполняется условие (5), то число линейно независимых уравнений равно n+m-1 отличных от нуля неизвестных.
Если в опорном плане число отличных от нуля компонентов равно в точности n+m-1, то план является не выраженным, а если меньше - то выраженным.
Для определения опорного плана существует несколько методов. Три из них - метод северно-западного угла, метод минимального элемента и метод аппроксимации Фогеля - рассмотрены ниже.
При составлении первоначального опорного плана методом северо-западного угла стоимость перевозки единицы не учитывается, поэтому построенный план далек от оптимального, получение которого связано с большим объемом вычислительных работ. Обычно рассмотренный метод используется при вычислениях с помощью ЭВМ.
Как и для всякой задачи линейного программирования, оптимальный план транспортной задачи является и опорным планом.
Для определения оптимального плана транспортной задачи можно использовать изложенные выше методы. Однако ввиду исключительной практической важности этой задачи и специфики ее ограничений [каждое неизвестное входит лишь в два уравнения системы (2) и (3) и коэффициенты при неизвестных равны единице] для определения оптимального плана транспортной задачи разработаны специальные методы, в частности метод потенциалов и Венгерский метод.
Список литературы
1. Экономико-математические методы. Математические методы и модели в экономике. Раздаточный материал/ сост. Аксенова Р.Н.- Владивосток, ДВГАЭУ, 2001.
2. Линейное программирование: Учебно-метод. пособие к контрольной работе для студ. эконом. факультета /И.В. Большакова, М.В. Кураленко. − Мн.: БНТУ, 2004. − 148 с.
Информация о работе Оптимизация производственной программы промышленного предприятия