Автор работы: Пользователь скрыл имя, 11 Марта 2012 в 11:56, реферат
Три наружные оболочки Земли, различающиеся фазовым состоянием, — твердая земная кора, жидкая гидросфера и газовая атмосфера — тесно связаны между собой, а вещество каждой из них проникает в пределы других. Подземные воды пронизывают верхнюю часть земной коры, значительный объем газов находится не в атмосфере, а растворен в гидросфере и заполняет пустоты в почве и горных породах. В свою очередь, вода и мелкие твердые минеральные частицы насыщают нижние слои атмосферы.
При изучении гранитов Тянь-Шаня было обнаружено, что в кварце, несмотря на ничтожную концентрацию свинца, заключено более 5 % всей массы этого металла, содержащегося в породе (табл. 1.2).
Таблица 1.2
Распределение свинца в минералах, слагающих граниты хребта Джумгол (по Л.В.Таусону, 1961)
Минерал Содержание минерала, % Содержание свинца в минерале, мг/кг Общее количество свинца в породе
мг/кг %
Кварц 35,3 4 1,4 5,4
Полевые шпаты 59,5 40 23,8 91,5
Биотит 3,7 20 0,7 2,7
Магнетит 0,7 17 0,1 0,4
Сумма — — 26,0 100,0
Невозможно предположить
изоморфное вхождение свинца, цинка
или другого металла в
При экспериментальном изучении
прочности закрепления
Можно выделить следующие формы нахождения рассеянных элементов в кристаллическом веществе земной коры:
I. Микроминералогические формы'.
1. Элементы, входящие в акцессорные минералы.
2. Элементы, содержащиеся в микроскопических выделениях в результате распада твердых растворов.
3. Элементы, находящиеся
во включениях остаточных
П. Неминералогические формы:
4. Элементы, сорбированные
поверхностью дефектов
5. Элементы, входящие в
структуру минерала-носителя
6. Элементы, находящиеся в структуре минерала-носителя в неупорядоченном состоянии.
Сочетание рассмотренных форм нахождения рассеянных элементов сильно меняется в зависимости от многих факторов. Соответственно меняется и суммарное содержание рассеянного элемента в разных участках земной коры. Поэтому для объективной оценки содержания элемента используются методы математической статистики.
ОСОБЕННОСТИ РАСПРЕДЕЛЕНИЯ ХИМИЧЕСКИХ
ЭЛЕМЕНТОВ В ЗЕМНОЙ КОРЕ
Варьирование содержания элемента в разных пробах обусловлено многими независимыми причинами. Когда распределение величины определяется достаточно большим числом примерно равнодействующих и взаимно независимых причин, то оно подчиняется так называемому нормальному закону Гаусса. Его графическим выражением является кривая с симметричными ветвями по обе стороны максимальной ординаты. При нормальном распределении наиболее вероятным значением служит среднее арифметическое х, которое совпадает с наиболее часто встречающимися значениями — модой. Растянутость симметричной кривой по оси абсцисс, т.е. разброс значений в большую и меньшую стороны от моды, характеризуется средним квадратичным отклонением а.
Нормальное распределение может также проявляться не для самой величины, а для ее логарифма (логарифмически нормальный, или логнормальный, закон распределения). В этом случае мода совпадает со средним геометрическим, а разброс значений характеризуется логарифмом а.
В 1940 г. Н.К.Разумовский эмпирическим путем обнаружил, что содержание металлов в рудах соответствует логарифмически нормальному распределению. Л.X.Арене в 1954 г., обработав обширный материал, независимо от Разумовского установил, что распределение рассеянных элементов в магматических породах аппроксимируется логарифмически нормальным законом. Многочисленные факты указывают на то, что распределение элементов с высокими кларками обычно подчиняется нормальному закону, а рассеянных — логнормальному. Это еще раз подтверждает принципиальное различие главных и рассеянных элементов.
С высокой вариабельностью низкокларковых элементов связана их способность к высокой степени концентрации. Максимальная степень концентрации главных элементов составляет 10 — 20 раз по отношению к их кларку, а для рассеянных элементов — в сотни и тысячи раз больше. Например, в рудах промышленных месторождений степень концентрации свинца, никеля, олова, хрома составляет 1000×п.
Говоря об огромных массах тяжелых металлов, сосредоточенных в месторождениях руд, следует помнить, что эти массы — ничтожная часть общего количества металлов, рассеянных в земной коре. В частности, общемировые запасы руд цинка, меди, свинца, никеля составляют всего лишь тысячные доли процента от масс этих металлов, рассеянных в верхнем километровом слое земной коры континентов.
Залежи руд связаны с окружающими горными породами постепенными переходами. Рудные тела находятся как бы в чехле постепенно убывающей концентрации металлов. Такие образования получили название ореолов рассеяния Первичные, сингенетичные рудные ореолы возникают одновременно с рудными телами и в результате одних и тех же процессов. Они имеют разнообразную конфигурацию, зависящую от геологического строения, состава вмещающих пород и условий рудообразования.
В рудах наряду с одним или несколькими главными рудообразующими элементами присутствуют сопутствующие элементы, концентрация которых также повышена, но не настолько, как главных. Элементы-спутники часто образуют изоморфные замещения главных. Например, в цинковых рудах постоянно содержится кадмий, в меньшем количестве — индий, галлий, германий. В медно-никелевых рудах присутствует значительная примесь кобальта, в меньшем количестве — селена и теллура. Все сопутствующие элементы также рассеиваются вокруг рудных тел. Обладая неодинаковой геохимической подвижностью, они образуют переходные зоны разной протяженности. В итоге состав и строение ореолов рассеяния очень сложны.
Среднее содержание химического
элемента представляет собой норму
— геохимический фон — для
данного типа пород в определенном
районе. На геохимическом фоне выделяются
геохимические аномалии — участки
горных пород с повышенной концентрацией
рассеянных элементов. Если они связаны
с залежами руд, то это ореолы рассеяния.
Если же концентрации металлов не достигают
кондиции руды, то такие аномалии называют
ложными. Используя статистическую
обработку массовых аналитических
данных, можно обнаружить закономерные
изменения величины геохимического
фона в пространстве и выявить
геохимические провинции. В пределах
провинций горные породы одного типа
обладают выдержанными статистическими
параметрами, в первую очередь значениями
среднего содержания одного или нескольких
рассеянных элементов. Среднее содержание
некоторых элементов в
Изложенный материал свидетельствует
о неравномерности
К К = А/К,
где А — содержание химического элемента в горной породе, руде, минерале и др.;
К — кларк этого элемента в земной коре. Если кларк концентрации больше единицы, это указывает на обогащение элементом, если меньше — означает снижение его содержания по сравнению с данными для земной коры в целом.
Изменение концентрации химических элементов в пространстве, отклонение от глобальной или местной геохимической норМЬ1 __ не отдельные случаи, а характерная черта геохимической структуры земной коры. Это имеет очень важное значение для состава фотосинтезирующих организмов суши, которые образуют основную часть массы живого вещества Земли.
ЖИВОЕ ВЕЩЕСТВО
Обоснование В.И.Вернадским представления о живом веществе Земли как о планетарной совокупности всех организмов, характеризуемой массой и химическим составом, открывает возможность для сравнения состава носителя жизни — живого вещества — с составом инертного вещества наружных оболочек Земли: земной коры, гидросферы и атмосферы. Для этого необходимо установить массу живого вещества и его химический состав, т. е. средние значения концентраций (кларки) слагающих его химических элементов. Но значения кларков не исчерпывают характеристики состава живого вещества. Этот состав не статичен и находится в непрерывном обновлении в результате взаимодействия с инертным веществом Земли. Поэтому наряду с определением кларков необходимо выяснить главные черты геохимического взаимодействия: установить селективность и интенсивность захвата живым веществом химических элементов из окружающей среды, количественно определить массообмен отдельных элементов между живым веществом и инертной средой и на этой основе выявить направленность массообмена.
СОСТАВ ЖИВОГО ВЕЩЕСТВА
Уже в конце XVIII в. стало ясно, что в составе живых организмов преобладают химические элементы, образующие на поверхности Земли пары и газы: кислород, углерод, водород, азот. Действительно, все организмы в основном состоят из воды и органического вещества. В то же время в любом организме обязательно присутствует некоторое количество химических элементов, которые при полном разрушении организма (испарении воды и сгорании органического вещества до углекислого газа) образуют минеральный остаток (золу). Исходным источником минеральных веществ является земная кора. Сумма зольных элементов живого вещества есть сложный итог его взаимодействия с земной корой, наиболее активно происходящего в почве (педосфере). Поэтому детальное изучение зольных элементов в организмах имеет столь же важное значение, как и определение главных элементов.
Выявление состава любого организма, а тем более расчет среднего состава всего живого вещества представляет сложную задачу по многим причинам. Прежде всего необходимо учитывать, что содержание основного компонента живых организмов — воды — варьирует в широких пределах. Например, в планктоне более 99 % слабосвязанной воды, а в стволах деревьев — около 60 %. Для того чтобы исключить влияние сильно варьирующих количеств воды и привести данные о содержании химических элементов к выражению, удобному для сравнения, применяется расчет содержания элементов на абсолютно сухое органическое вещество, т. е. высушенное до постоянной массы при температуре 102— 105 °С. В этом случае получаются значения содержания элементов не в реальных живых организмах, а в их условной сухой биомассе.
В обезвоженном, высушенном до постоянной массы органическом веществе углерод составляет немногим менее половины, другими главными компонентами являются кислород, водород и азот. Первичное органическое вещество биоса Земли образуется преимущественно в результате фотосинтеза из углекислого газа и воды, причем молекулы последней расщепляются. Атомы водорода входят в структуру органического вещества, а кислород выделяется как метаболит. Если не только избавиться от воды в организме, но и сжечь сухое органическое вещество, то будут удалены четыре главных элемента и останется сумма так называемых минеральных веществ, входящих в состав организма, — зола. В золе можно более точно выяснить соотношение остальных (несколько десятков) химических элементов, находящихся в органах и тканях живого организма. Знать относительное содержание химических элементов в золе наземных растений необходимо для сопоставления их с концентрацией элементов в минеральном субстрате, на котором они произрастают и из которого получают зольные элементы.
На основании изложенного понятно, что может быть три варианта выражения химического состава любого биологического объекта и глобального живого вещества. Относительное содержание химических элементов можно рассчитать, во-первых, на живое (сырое) вещество организмов, во-вторых, на их сухую биомассу и, в-третьих, на золу, т. е. на сумму минеральных веществ. Каждый из трех вариантов расчета используется для решения конкретных задач.
Определение кларков живого вещества затрудняется сильным колебанием концентрации химических элементов в индивидуальных организмах. Концентрация меняется в зависимости от систематического положения, среды обитания, стадии развития организма. Даже в одном организме концентрация одного и того же элемента в разных тканях и органах неодинакова.
Следует отметить, что массы
разных групп организмов отличаются
намного больше, чем концентрации
элементов в различных
Благодаря усилиям ученых разных стран установлено, что доминирующую часть массы живого вещества Мировой суши и всей планеты образуют высшие растения. Масса живого вещества океана в несколько сотен раз меньше. Масса наземных животных составляет около 1 % от фитомассы. По этой причине состав растительности суши обусловливает состав всего живого вещества Земли
Учитывая преобладание высших растений, можно считать, что в живой (сырой) биомассе Мировой суши содержится: 60 % воды, 38 % органического вещества, 2 % зольных элементов (Романке-вич Е. А , 1988). При пересчете на абсолютно сухую биомассу органическое вещество составляет 95 %, зольные элементы — 5 %.