Автор работы: Пользователь скрыл имя, 26 Февраля 2013 в 16:00, курс лекций
Кальций-транспортная АТФаза - сравнительно небольшой белок, состоящий из одной полипептидной цепи. Он выполняет важнейшую функцию - активный перенос ионов кальция через мембраны клеток, поддерживая тем самым низкую концентрацию этих ионов в клетке (10-7 М) по сравнению с окружающей средой (3•10-3 М). Хотя полная пространственная структура фермента еще не раскрыта, основные стадии его работы выяснены, и теперь нам понятно, каким образом энергия гидролиза АТФ тратится на перенос Ca2+ из области меньших в область больших концентраций этих ионов.
Гидролиз АТФ
Итак, на поверхности АТФазы имеются центры связывания для двух ионов кальция и для одной молекулы АТФ, обладающие высоким сродством к субстрату. Они взаимодействуют между собой, так как связывание Са2+"запускает'' гидролиз АТФ, присоединенного вместе с Mg2+ к своему центру. При этом было показано, что гидролиз АТФ начинается только после того как оба иона кальция присоединятся к своим участкам связывания. Это соответствует стехиометрии переноса Са2+ и гидролиза АТФ, равной 2, о которой мы уже говорили.
Фосфорилирование белка(стадия3)
Гидролиз АТФ осуществляется Са-АТФазой в три этапа: вначале происходит связывание АТФ, затем - фосфорилирование белка и отщепление АДФ, и наконец - гидролитическое расщепление белок-фосфатной связи и высвобождение ортофосфата.
Фосфорилирование
где Ko - константа связывания ионов кальция на АТФазе у наружной поверхности мембранных везикул СР, а Kph - константа равновесия реакции фосфорилирования. Последняя величина близка к единице.
Как известно, при гидролизе АТФ высвобождается большое количество энергии, благодаря чему связь между фосфатом и АДФ в молекуле АТФ называют макроэргической (богатой энергией).
Обратимость процесса фосфорилирования белка означает, что и связь фосфата с аспарагиновым остатком в фосфорилированном белке (на рис. 3 она обозначена знаком "~ ") тоже богата энергией, которая высвобождается при ее гидролизе. Ниже мы увидим, что именно эта энергия и тратится на активный перенос ионов кальция.
Гидролиз энзим-фосфатного комплекса(стадия 4)
Высокоэнергетическая (способная передавать остаток фосфорной кислоты на АДФ) форма фосфорилированной АТФазы стабильна только в присутствии миллимолярных (т. е. сравнительно высоких) концентраций ионов Са2+. При меньших концентрациях Ca2+ происходит вытеснение ионов Са2+ из Са - связывающих центров фосфофермента ионами Mg2+ (которые присутствуют в среде и без которых Са-АТФаза не работает); ионы кальция при этом выходят в окружающий раствор.
Эта стадия работы АТФазы (гидролиз E~ P) - важнейшая в цикле переноса ионов кальция и заслуживает пристального рассмотрения. Вытеснение ионов Са2+ из Са - связывающих центров высокоэнергетического фосфопроизводного белка ионами Mg2+ происходит, как выяснилось, не одномоментно, а в два этапа: сначала отщепляется кальций, а только потом - происходит гидролиз фосфатной связи (отщепление неорганического фосфата).
Кальциевый и магниевый
комплексы энзим-фосфата
Оказалось, что комплекс энзим-фосфата с магнием не обладает способностью передавать фосфат на АДФ: при гидролитическом отщеплении фосфата уже не выделяется достаточной энергии; связь фосфата с белком не макроэргическая (комплекс обозначаем как E~ P).
На что же потратилась энергия фосфатной связи? - Оказывается, она пошла на изменение константы связывания кальция с АТФазой. Изучение влияния ионов Ca2+ на распад и образование фосфофермента показало, что при фосфорилировании константа связывания Ca2+ уменьшается более чем в 1000 раз, т. е. становится меньше 2·103М-1. В 0,5 мМ растворе Ca2+ половина всех связанных ранее ионов кальция после форсфорилирования белка отрывается от АТФазы и ионы переходят в раствор; при 1 мМ концентрации ионов кальция в среде в связанном состоянии находятся две трети ионов, остальные выходят в раствор (см. уравнение 3). Наличие ионов магния в среде дополнительно уменьшает количество связанного кальция, поскольку у фосфорилированной АТФазы разница в сродстве к Ca2+ и Mg2+ не очень велика.
Что же получается? До фосфорилирования АТФаза связывала кальций при низких концентрациях (10-7 M), а после фосфорилирования - только при высоких (10-3 M). Энергия АТФ пошла на то, чтобы АТФаза "вытолкнула" в концентрированный раствор Ca2+ ионы, которые фермент "выловил" из их разбавленного раствора. Но это еще не все. Дело ведь в том, что АТФаза связывает кальций по одну сторону мембраны, а отщепляется он - по другую.
Перенос кальция
через мембрану(транслокация)
В везикулах саркоплазматического ретикулума молекулы Са-АТФазы ориентированы строго определенным образом, так что связывание ионов кальция и АТФ происходит с наружной стороны пузырьков, а высвобождение кальция - с внутренней. Изучение связывания ионов кальция на разных стадиях работы Са-АТФазы показало, что в нефосфорилированном состоянии Са- связывающие центры АТФазы доступны для ионов Ca2+ только с внешней стороны пузырьков и недоступны с внутренней.
После фосфорилирования фермента Са - связывающие центры становятся доступными с внутренней стороны и недоступными с внешней. Таким образом, фосфорилирование приводит к переносу центров связывания кальция через мембрану (транслокации). Поскольку перенос ионов осуществляет белковая молекула, очевидно, что какие-то ее части должны перемещаться, или, как принято говорить, должно происходить изменение конформации белковой молекулы. Одновременно, как уже говорилось, происходит изменение сродства центров связывания к ионам кальция. Механика сопряжена с энергетикой.
Завершение цикла
- гидролиз фосфофермента
(стадии 5 и 6)
Магниевый комплекс энзим-фофата быстро гидролизуется, и фермент приобретает свои исходные свойства. При этом на поверхности фермента, обращенной наружу, вновь появляются центры связывания кальция с высоким сродством. Очевидно, что гидролиз E~P (стадия 5 на рис. 2) приводит, во первых, к освобождению центров связывания от магния, а во-вторых, к их обратной транслокации (стадия 6). При этом на поверхности фермента, обращенной наружу, центры связывания кальция приобретают вновь высокое сродство к этим ионам. Таким образом, дефосфорилирование E~P приводит к пространственным перемещениям участка белковой молекулы и к изменениям энергии связывания ионов точно так же, как и фосфорилирование АТФазы, но в противоположном направлении. Цикл работы фермента замыкается (см. рис. 3).
Прямые доказательства того, что фермент “шевелится”, когда работает
Хотя идея о том, что при работе фермента происходит изменение конформации белка, высказана давно, прямые доказательства этого получены далеко не для всех известных ферментативных реакций. В этом отношении транспортные АТФазы - благодарный объект, поскольку эти механохимические машины осуществляют перенос ионов с одной стороны мембраны на другую. Ясно, что такие действия связаны с перемещением в пространстве определенных участков белковой молекулы.
Было показано изменение конформации Са-АТФазы при работе этого фермента методами дифференциальной спектрофотометрии, собственной белковой флуоресценции и спиновых зондов. Однако интереснее всего узнать, на каких именно стадиях работы фермента происходят наиболее заметные изменения конформации белка. В работах, проведенных в нашей лаборатории совместно с В. Б. Ритовым методом спиновых меток, было обнаружено резкое увеличение подвижности участка белка, содержащего SH-группу, при присоединении к ферменту Mg·АТФ. (Спиновая метка - это химическая группировка, содержащая устойчивый свободный радикал - (иминоксил, > NO), сигнал ýïð которого зависит от физических свойств той среды, которая окружает иминоксильную ( > NO) группу. При увеличении подвижности полипептидной цепи, к которой присоединен иминоксильный радикал, меняется соответствующим образом и сигнал ýïð). Затем удалось показать изменение конформации фермента (подвижности спиновой метки, присоединенной к SH-группе) как при образовании фосфофермента, так и при его распаде. Таким образом, механические перемещения участка фермента, которые были предсказаны на основании изучения отдельных стадий работы АТФазы (рис. 3), были подтверждены прямыми опытами.
Физическое состояние липидов и работа Са-АТФазы
Активность многих мембранных ферментов, включая Са- АТФазу, существенно зависит от вязкости и химической природы окружающих липидов. Так, например, меняя фосфолипидный состав везикул, в которые встроена Са-АТФаза, можно заметно влиять на активность фермента, причем чем выше текучесть (величина, обратная вязкости) липидного бислоя липосом, тем выше скорость гидролиза АТФ. При изменении температуры также параллельно изменяется текучесть липидного слоя в везикулах и активность Са-АТФазы. Было также показано, что при увеличении вязкости липидного слоя мембран, вызванного окислением фосфолипидов, происходит снижение активности фермента.
Хотя кажется вроде бы очевидным, что активность фермента, плавающего в липидном слое, должна зависеть от вязкости этого слоя, над этим все-таки стоит призадуматься. В самом деле, ведь стадии присоединения субстрата и отщепления продуктов реакции протекают в водной фазе. Поэтому если бы фермент, выполняя свою функцию, не осуществлял никаких механических движений, вязкость вряд ли могла бы влиять на его деятельность.
По-видимому, к вязкости
липидного окружения
В живых клетках изменения липидного состава мембран, например состава жирных кислот в молекулах фосфолипидов, включение холестерина или окисление мембранных липидов, также могут влиять на микровязкость липидного слоя и тем самым на активность Са-АТФазы. Разумно предположить, например, что повышение вязкости клеточных мембран ввиду избытка холестерина или перекисного окисления липидов может привести к ухудшению работы ферментных систем, осуществляющих выкачивание Ca2+ из клетки и в результате этого - к повышению концентрации этих ионов в клеточном соке со всеми вытекающими последствиями.
Строение кальциевой АТФазы
Выражение "О ферментах, как и о людях, судят по их действию" , символ веры первого поколения энзимологов, сейчас уже не так бесспорно. Многие ферменты получены в виде кристаллов, и на основании рентгеноструктурного анализа воссоздана их подробная пространственная структура, а подчас и структура их комплексов с субстратами и ингибиторами. К сожалению, транспортные АТФазы, не растворимые в воде и работающие в составе мембран, не удается получить в виде настоящих кристаллов. Тем не менее, многое об их структуре все же известно, включая последовательность аминокислот в полипептидной цепи, локализацию мест связывания ионов и АТФ в полипептидной цепи и расположение определенных участков цепи по отношению к мембране.
|
Черная линия - полипептидная цепь Са-АТФазы саркоплазматического ретикулума, красная - участки цепи Са-АТФазы цитоплазматической мембраны. Заштрихованные прямоугольники - a-спиральные участки, пронизывающие мембрану (обозначены в тексте как М1, М2 и т, считая слева направо), NH2 - N- конец полипептидной цепи, COOH - C-конец. Зеленые прямоугольники обозначают участки связывания: Са2+ - ионов кальция, Mg-ATP - молекулы АТФ, PLB - фосфоламбана (у Са-АТФазы эндоплазматического ретикулума), CM - кальмодулина (у цитоплазматической Са-АТФазы). P - участок фосфорилирования |
На
рис. 4 приведено схематическое
Другие Са-АТФазы
Даже в одних и тех же клетках поперечно-полосатых мышц содержится не менее двух изоферментов Са-АТФазы, встроенной в мембраны эндоплазматического ретикулума, которые различаются по чувствительности к кофеину. Вообще же можно говорить о целом семействе кальциевых АТФаз. Различают Са-АТФазы цитоплазматических мембран и Са-АТФазы эндоплазматического (в том числе саркоплазматического) ретикулума. Каждая из них представлена несколькими изоформами. Плазматическая Са-АТФаза, в отличие от саркоплазматической, содержит третью петлю полипептидной цепи, экспонированной в цитоплазму и образуемый С-концом. На рис. 4 она обозначена красным цветом. На этом домене имеется центр связывания кальмодулина - регуляторного белка, который, помимо ряда других функций, реактивирует плазматическую Са-АТФазу, о чем будет сказано в следующем разделе.
Регуляция активности транспортных АТФаз
Активность кальциевых АТФаз внутриклеточных депо (например, эндоплазматического ретикулума клеток сердца, печени или эпителия) регулируется особым белком - фосфоламбаном, который связывает участок пептидной цепи АТФазы неподалеку от места фосфорилирования (см. рис. 4) и тормозит работу фермента за счет уменьшения сродства участков связывания Ca2+ к этому иону. При необходимости, внутриклеточные регуляторные системы "отцепляют" фосфоламбан от АТФазы, и ее работа восстанавливается. Это осуществляется за счет фосфорилирования фосфоламбана протеинкиназами. Фосфорилированный фосфоламбан не обладает способностью связываться с Са-АТФазой и снижать ее активность.