Автор работы: Пользователь скрыл имя, 26 Декабря 2011 в 11:37, контрольная работа
3.Назовите биообъекты растительного происхождения используемые в культуре ткани для получения лекарственных веществ (не менее 8). Примеры использования (донор, донатор).
использованием генетически модифицированного штамма E. coli и грибного фермента дегидрогеназы. Аромат ванилина при биотехнологическом его получении оказался в несколько раз интенсивнее обычного.
Весьма перспективно использование грибных культур в качестве продуцентов сырных, грибных, рыбных ароматизаторов. Освоены биотехнологические способы получения веществ, имитирующих ароматы земляники, малины, банана, кокоса, яблока, персика, миндаля.
Микроорганизмы являются важным источником получения полимерных материалов на основе полисахаридов. Ценным микробным полисахаридом является декстран, образуемый бактериями рода Leucomonstoс. Декстран служит основой получения медицинских препаратов (кровезаменителей) и препаратов для биохимических исследований - сефадексов и др. молекулярных сит. Нуклеозиды, нуклеотиды и их производные также можно получать с помощью микроорганизмов.
Большинство пищевых
красителей синтезируют химическим путем,
но некоторые натуральные пигменты микроорганизмов
могут быть с успехом использованы в качестве
красителей для пищевых продуктов. Так,
из гриба Monascus получен натуральный красный
пищевой краситель. Из бактерий с Канарских
островов получен розовый краситель для
мороженого, крема, мыла. Такие красители
безвредны и придают стойкий цвет продуктам,
что позволяет предположить, что в будущем
микробиологическому производству красителей
будет уделяться больше внимания, чем
в настоящее время.
Тема 9
3.Биологическая
роль антибиотиков как
Производство вторичных метаболитов
Из всех продуктов,
получаемых с помощью микробных
процессов, наибольшее значение имеют
вторичные метаболиты. Вторичные
метаболиты, называемые также идиолитами,
это низкомолекулярные
Получение такого рода веществ послужило основой для создания целого ряда отраслей микробиологической промышленности. Первым в этом ряду стало производство пенициллина; микробиологический способ получения пенициллина был разработан в 1940-х годах и заложил фундамент современной промышленной биотехнологии.
Молекулы антибиотиков очень разнообразны по составу и механизму действия на микробную клетку. При этом в связи с возникновением устойчивости патогенных микроорганизмов к старым антибиотикам постоянно существует потребность в новых. В некоторых случаях природные микробные антибиотические продукты химическим или энзиматическим путем могут быть превращены в так называемые полусинтетические антибиотики, обладающие более высокими терапевтическими свойствами.
Антибиотики —
органические соединения. Они синтезируются
живой клеткой и способны в
небольших концентрациях
Рост микроорганизмов можно охарактеризовать как S - образную кривую. Первая стадия - стадия быстрого роста, или логарифмическая, для которой характерен синтез первичных метаболитов. Далее наступает фаза медленного роста, когда увеличение биомассы клеток резко замедляется. Микроорганизмы, производящие вторичные метаболиты, вначале проходят стадию быстрого роста, тропофазу, во время которой синтез вторичных веществ незначителен. По мере замедления роста из-за истощения одного или нескольких необходимых питательных веществ в культуральной среде микроорганизм переходит в идиофазу; именно в этот период синтезируются идиолиты. Идиолиты, или вторичные метаболиты, не играют явной роли в процессах метаболизма, они вырабатываются клетками для адаптации к условиям окружающей среды, например, для защиты. Их синтезируют не все микроорганизмы, а в основном нитчатые бактерии, грибы и спорообразующие бактерии. Таким образом, продуценты первичных и вторичных метаболитов относятся к разным таксономическим группам.
Особенности культурального роста этих микроорганизмов необходимо учитывать при производстве. Например, в случае антибиотиков большинство микроорганизмов в процессе тропофазы чувствительно к собственным антибиотикам, однако во время идиофазы они становятся к ним устойчивыми.
Чтобы уберечь
микроорганизмы, продуцирующие антибиотики,
от самоуничтожения, важно быстро достичь
идиофазы и затем культивировать микроорганизмы
в этой фазе. Это достигается путем варьирования
режимов культивирования и составом питательной
среды на стадиях быстрого и медленного
роста.
Тема10
3.Применение
растительных клеток для
Государственное образовательное учреждение
высшего профессионального образования
«Тюменская
государственная медицинская
Министерства здравоохранения и социального развития »
(ГОУ
ВПО ТюмГМА
Кафедра
фармацевтической технологии
Реферат
Контрольная работа по дисциплине «Биотехнология лекарственных средств»
Вариант
№ 3
Исполнитель: студент (ка)
заочного отделения
фармацевтического факультета,
VI курс 6 группа
Горбунова
(Чернова) Надежда Сергеевна
Тюмень, 2011 г.
Содержание
Введение
Биогеотехнология
- использование геохимической
Своими корнями биогеотехнология уходит в геологическую микробиологию. Микроорганизмы принимали и принимают активное участие в геологических процессах. Биологические свойства различных групп микроорганизмов и особенности их жизнедеятельности в месторождениях полезных ископаемых составляют научные основы биогеотехнологии.
Биогеотехнология стихийно зародилась еще в XVI в. До нас дошли сведения о том, что в те далекие времена в Венгрии для получения меди груды добытой руды орошали водой. Этот нехитрый технологический прием оказался прообразом современного бактериально-химического метода кучного выщелачивания металлов из руд. Конечно, тогда еще не знали, что используемый процесс получения меди по своей природе является микробиологическим. Это стало известно только в 1922 г. благодаря работам немецких ученых Рудольфа и Хельброннера. По-видимому, 1922 г. следует считать официальной датой рождения биогеотехнологии. В дальнейшем биогеотехнология развивалась неровно и своего совершеннолетия достигла к началу 80-х годов нашего века. К этому времени наряду с бактериальным выщелачиванием металлов сформировались и другие разделы биогеотехнологии — удаление серы из углей, борьба с метаном в угольных шахтах, повышение нефтеотдачи пластов.
Большое разнообразие биотехнологических процессов, нашедших промышленное применение, приводит к необходимости рассмотреть общие, наиболее важные проблемы, возникающие при создании любого биотехнологического производства. Процессы промышленной биотехнологии разделяют на 2 большие группы: производство биомассы и получение продуктов метаболизма. Однако такая классификация не отражает наиболее существенных с технологической точки зрения аспектов промышленных биотехнологических процессов. В этом плане необходимо рассматривать стадии биотехнологического производства, их сходство и различие в зависимости от конечной цели биотехнологического процесса. В общем виде система биотехнологического производства продуктов микробного синтеза.
Вклад биотехнологии
в решение общих экологических
проблем
Немаловажный вклад в биотехнологические разработки внесли советские исследователи: в СССР в 30-е годы были построены первые заводы по получению кормовых дрожжей на гидролизатах древесины, сельскохозяйственных отходах и сульфитных щелоках, под руководством В. Н. Шапошникова успешно внедрена технология микробиологического производства ацетона и бутанола. Большую роль в создание основ отечественной биотехнологии внесло учение Шапошникова о двухфазном характере брожения. В 1926 г. в СССР были исследованы биоэнергетические закономерности окисления углеводородов микроорганизмами. В последующие годы биотехнологические разработки широко использовались в нашей стране для расширения «ассортимента» антибиотиков для медицины и животноводства, ферментов, витаминов, ростовых веществ, пестицидов.
Научно-исследовательского института биосинтеза белковых веществ в нашей стране налаживается крупнотоннажное производство богатой белками биомассы микроорганизмов как корма. В 1966 г. микробиологическая промышленность была выделена в отдельную отрасль (Главное управление микробиологической промышленности при Совете Министров СССР — Главмикробиопром). Имеются ценные разработки по получению новых источников энергии биотехнологическим путем (технологическая биоэнергетика), отметим большое значение биогаза - заменителя топлива, получаемого из недр земли.
Значительные успехи, достигнутые во второй половине XX в. в фундаментальных исследованиях в области биохимии, биоорганической химии и молекулярной биологии, создали предпосылки для управления элементарными механизмами жизнедеятельности клетки, что явилось мощным импульсом для развития биотехнологии. Выяснение роли нуклеиновых кислот в передаче наследственной информации, расшифровка генетического кода, раскрытие механизма индукции и репрессии генов, совершенствование технологии культивирования микроорганизмов, клеток и тканей растений и животных позволили разработать методы генетической и клеточной инженерии, с помощью которых можно искусственно создавать новые формы высокопродуктивных .организмов. Генетическая и клеточная инженерия рассматривается как принципиально новое направление биологической науки, которое сегодня ставят в один ряд с расщеплением атома, преодолением земного притяжения и созданием средств электроники (Ю. А. Овчинников, 1985).
В разработку генно-инженерных
методов советские
С 1970 г. в нашей стране ведутся интенсивные исследования по селекции культур для непрерывного культивирования в промышленных целях.
Развитие методов для изучения структуры белков, выяснение механизмов функционирования и регуляции активности ферментов открыли путь к направленной модификации белков и привели к рождению инженерной энзимологии. Иммобилизованные ферменты, обладающие высокой стабильностью, становятся мощным инструментом для осуществления каталитических реакций в различных отраслях промышленности.
Все эти достижения поставили биотехнологию на новый уровень, качественно отличающийся от прежнего возможностью сознательно управлять клеточными процессами. В современном звучании биотехнология — эхапромышленное использование биологических процессов и агентов на основе получения высокоэффективных форм микроорганизмов, культур клеток и тканей растений и животных с заданными свойствами. Биотехнология — междисциплинарная область научно-технического прогресса, возникшая на стыке биологических, химических и технических наук.
Информация о работе Контрольная работа по «Биотехнология лекарственных среств»