Структурная и функциональная организация клетки как целостной живой системы

Автор работы: Пользователь скрыл имя, 13 Января 2012 в 16:44, курсовая работа

Описание

Клетка — основная структурная и функциональная единица жизни, ограниченная полупроницаемой мембраной и способная к самовоспроизведению. Клетки разных живых организмов имеют свои отличительные особенности. Как известно, все организмы делят на прокариоты, клетки которых не имеют оформленного ядра, и эукариоты, клетки которых обязательно содержат ядро. Существенные различия в структуре имеются и у клеток, входящих в состав одного и того же организма.

Содержание

Введение………………………………………………………………….……..…4
Обзор литературы:
1. Строение растительной клетки…………………………………..……………5
1.1. Клеточная оболочка……………………………………………………….…6
1.2. Цитоплазма………………………………………………………………..…12
1.2.1. Рибосомы…………………………………………………………………13
1.2.2. Мембраны………………………………………………………...………15
1.2.3. Эндоплазматическая сеть…………………………………………...…..18
1.2.4. Аппарат Гольджи……………………………………………………...…20
1.2.5. Вакуоль……………………………………………………………...……20
1.2.6. Лизосомы…………………………………………………………………21
1.2.7. Микротельца………………………………………………………….….22
1.3. Пластиды………………………………………………………………….....23
1.3.1. Хлоропласты…………………………………………………….……….23
1.3.2. Генетический аппарат хлоропластов………………………………..….25
1.4. Митохондрии…………………………………………………………….….27
1.5. Ядро……………………………………………………………………….…31
2. Физиология растительной клетки……………………………………………33
2.1. Раздражимость…………………………………………………………...….33
2.2. Репликация, транскрипция, трансляция………………………………..….35
2.3. Регуляция ферментативной активности клетки…………………………..42
2.4. Поступление воды в растительную клетку……………………………..…46
2.4.1. Диффузия и осмос…………………………………………………….…46
2.4.2. Клетка как осмотическая система………………………………………49
2.5. Поступление ионов в растительную клетку…………………………..…..54
2.6. Фотосинтез………………………………………………………….……….58
3. Заключение……………………………………………………………….……62
4. Список литературы……………………………………………………………63

Работа состоит из  1 файл

Клеточная оболочка.doc

— 318.00 Кб (Скачать документ)
 

Тема: «Структурная и функциональная организация клетки как целостной живой системы»

                                        

Содержание 

Введение………………………………………………………………….……..…4

Обзор литературы:

1. Строение растительной клетки…………………………………..……………5

1.1. Клеточная оболочка……………………………………………………….…6

1.2. Цитоплазма………………………………………………………………..…12

  1.2.1. Рибосомы…………………………………………………………………13

  1.2.2. Мембраны………………………………………………………...………15

  1.2.3. Эндоплазматическая сеть…………………………………………...…..18

  1.2.4. Аппарат Гольджи……………………………………………………...…20

  1.2.5. Вакуоль……………………………………………………………...……20

  1.2.6. Лизосомы…………………………………………………………………21

  1.2.7. Микротельца………………………………………………………….….22

1.3. Пластиды………………………………………………………………….....23

  1.3.1. Хлоропласты…………………………………………………….……….23

  1.3.2. Генетический аппарат хлоропластов………………………………..….25

1.4. Митохондрии…………………………………………………………….….27

1.5. Ядро……………………………………………………………………….…31

2. Физиология растительной клетки……………………………………………33

2.1. Раздражимость…………………………………………………………...….33

2.2. Репликация, транскрипция, трансляция………………………………..….35

2.3. Регуляция ферментативной активности клетки…………………………..42

2.4. Поступление воды в растительную клетку……………………………..…46

  2.4.1. Диффузия и осмос…………………………………………………….…46

  2.4.2. Клетка как осмотическая система………………………………………49

2.5. Поступление ионов в растительную клетку…………………………..…..54

2.6. Фотосинтез………………………………………………………….……….58

3. Заключение……………………………………………………………….……62

4. Список литературы……………………………………………………………63

         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

          Введение

     Клетка — основная структурная и функциональная единица жизни, ограниченная полупроницаемой мембраной и способная к самовоспроизведению. Клетки разных живых организмов имеют свои отличительные особенности. Как известно, все организмы делят на прокариоты, клетки которых не имеют оформленного ядра, и эукариоты, клетки которых обязательно содержат ядро. Существенные различия в структуре имеются и у клеток, входящих в состав одного и того же организма. В многоклеточном организме имеются высокоспециализированные клетки, которым присущи свои особые функции. Клетка корня с корневым волоском не похожа на клетку флоэмы или клетку мезофилла листа. Для всех же клеток свойственны те же функции, которыми можно характеризовать и жизнь в целом. Клетка, как и все живое, является результатом длительной эволюции и характеризуется высокой упорядоченностью своей структуры.

     Открытие  клеточного строения организма непосредственно  связано с изобретением микроскопа. В 1665 г. голландский  ученый Роберт Гук  усовершенствовал простейший микроскоп и рассмотрел с его помощью срез пробки. На этом срезе оказались видимыми отдельные ячейки. Роберт Гук назвал их клетками. Однако только в середине ХIХ в. было признано это открытие. На основе многочисленных наблюдений, главным образом благодаря работам ботаника М. Шлейдена (1838) и зоолога Т. Шванна (1839), была сформулирована клеточная теория строения организмов. Значение открытия клеточного строения организмов многогранно. Оно дало основу для утверждения взгляда о единстве происхождения всего живого, открыло возможность изучения живого на уровне клетки. При изучении многоклеточных организмов надо помнить, что каждая клетка находится в тесном взаимодействии с другими клетками и что организм — это единое целое, а не сумма клеток. 

     Обзор литературы:

     1. Строение растительной клетки

     Растительная  клетка состоит из более или менее  жесткой клеточной оболочки и протопласта. Клеточная оболочка – это клеточная стенка и цитоплазматическая мембрана. Протопласт – это протоплазма индивидуальной клетки. Протопласт состоит из цитоплазмы и ядра. В цитоплазме находятся органеллы (рибосомы, микротрубочки, пластиды, митохондрии) и мембранные системы (эндоплазматический ретикулум, диктиосомы). Цитоплазма включает в себя еще цитоплазматический матрикс (основное вещество) в которое погружены органеллы и мембранные системы. От клеточной стенки цитоплазма отделена плазматической мембраной, которая представляет собой элементарную мембрану. В отличие от большинства животных клеток растительные клетки содержат одну или несколько вакуолей. Это пузырьки, заполненные жидкостью и окруженные элементарной мембраной (тонопластом). В живой растительной клетке основное вещество находится в постоянном движении. В движение, называемое током цитоплазмы или циклозом, вовлекается органеллы.  

     1.1. Клеточная оболочка

     Характерной особенностью растительной клетки является наличие жесткой (твердой) клеточной стенки. Клеточная оболочка определяет форму клетки, придает клеткам и тканям растений механическую прочность и опору, защищает цитоплазматическую мембрану от разрушения под влиянием гидростатического давления, развиваемого внутри клетки. Однако такую оболочку нельзя рассматривать только как механический каркас. Клеточная оболочка обладает такими свойствами, которые позволяют противостоять давлению воды внутри клетки, и в то же время обладает растяжимостью и способностью к росту. Она является противоинфекционным барьером, принимает участие в поглощении минеральных веществ, являясь своеобразным ионообменником. Появились данные, что углеводные компоненты клеточной оболочки, взаимодействуя с гормонами, вызывают ряд физиологических изменений.

     Для молодых растущих клеток характерна первичная клеточная оболочка. По мере их старения образуется вторичная структура. Первичная клеточная оболочка, как правило, малоспециализирована, имеет более простое строение и меньшую толщину, чем вторичная.

     В состав клеточной оболочки входят целлюлоза, гемицеллюлозы, пектиновые вещества, липиды и небольшое количество белка. Компоненты клеточной оболочки являются продуктами жизнедеятельности клетки. Они выделяются из цитоплазмы и претерпевают превращения на поверхности плазмалеммы.

     Первичные клеточные стенки содержат из расчета на сухое вещество: 25% целлюлозы, 25% гемицеллюлозы, 35% пектиновых веществ и 1—8% структурных белков. Однако цифры весьма колеблются. Так, в состав клеточных стенок колеоптилей злаков входит до 60—70% гемицеллюлоз, 20—25 % целлюлозы, 10% пектиновых веществ. Вместе с тем клеточные стенки эндосперма содержат до 85% гемицеллюлоз. Во вторичных клеточных стенках больше целлюлозы.

     Остов клеточной оболочки составляют переплетенные микро- и макрофибриллы целлюлозы. Целлюлоза, или клетчатка (С6Н10О5)n, представляет собой длинные неразветвленные цепочки, состоящие из 3—10 тыс. остатков бета-D-глюкозы, соединенных бета-1,4-гликозидными связями. Молекулы целлюлозы объединены в мицеллу, мицеллы объединены в микрофибриллу, микрофибриллы объединены в макрофибриллу. Макрофибриллы, мицеллы и микрофибриллы соединены в пучки водородными связями. Диаметр мицеллы составляет диаметр микрофибриллы — 25—30 нм, макрофибриллы — 0,5 мкм. Структура микро- и макрофибрилл неоднородна. Наряду с хорошо организованными кристаллическими участками имеются паракристаллические, аморфные. Микро- и макрофибриллы целлюлозы в клеточной оболочке погружены а аморфную желеобразную массу —  матрикс. Матрикс состоит из гемицеллюлоз, пектиновых веществ и белка. Гемицеллюлозы, или полуклетчатки,— это производные пентоз и гексоз. Степень полимеризации у этих соединений меньше по сравнению с клетчаткой (150—300 мономеров, соединенные бета-1,3- и бета 1,4-гликозидными связями). Из гемицеллюлоз наибольшее значение имеют ксилоглюканы, которые входят в состав матрикса первичной клеточной стенки. Это цепочки остатков D-глюкозы, соединенных бета-1,4-гликозидными связями, у которых от шестого углеродного атома глюкозы отходят боковые цепи, главным образом из остатков D-ксилозы. К ксилозе могут присоединяться остатки галактозы и фруктозы. Гемицеллюлозы способны связываться с целлюлозой, поэтому они формируют вокруг микрофибрилл целлюлозы оболочку, скрепляя их в сложную цепь.

          Пектиновые вещества – это полимерные соединения углеводного типа. Они обуславливают высокую оводненность клеточной оболочки. Важнейшим представителем пектиновых веществ являются рамногалактуронаны, представляющие собой цепочку остатков альфа-D-галактуронаны (Гк), к которой в ряде мест присоединяются остатки рамнозы. Рамноза (С6Н1205) — производное глюкозы. Вследствие внедрения рамнозы основная цепь этого полисахарида приобретает зигзагообразную форму. В некоторых случаях четвертый углеродный атом рамнозы замещен на галактозу. Пектиновые вещества содержат большое количество карбоксильных групп и могут эффективно связывать ионы двухвалентных металлов, например, Са+2, что играет роль в объединении компонентов клеточной стенки. Ионы Са+2 могут обмениваться на такие ионы как К+ и Н+, что обеспечивает катионообменную способность.

          Клеточные стенки содержат также белок экстенсин (до 10%). Это гликопротеид, у которого около 30% всех аминокислот белковой части представлено оксипролином. К оксипролину присоединяются углеводные цепочки, состоящие из четырех остатков моносахара арабинозы. По исследованиям Д. Лампорта, именно цепочки арабинозы придают устойчивость структуре экстенсина. Вместе с тем экстенсин является связующим звеном между полисахаридами, входящими в состав клеточной оболочки, соединяя их в единый каркас. Наряду с этим в состав клеточной оболочки входят специфические углевод-связывающие белки лектины, согласно современным представлениям участвующие в обеспечении узнавания и взаимодействия клеток, рецепторных свойств, защиты от инфекций. В клеточных оболочках локализован ряд ферментов, по преимуществу гидролаз (глюкозидазы, гликозидазы и др.). Эти ферменты, расщепляя соответствующие связи, могут участвовать в растяжении клеточной оболочки.

          Клеточная оболочка способна к утолщению и видоизменению. В результате этого образуется ее вторичная структура. Утолщение оболочки происходит путем наложения новых слоев на первичную оболочку. Ввиду того, что наложение идет уже на твердую оболочку, фибриллы целлюлозы в каждом слое лежат параллельно, а в соседних слоях — под углом друг к другу. Предполагается, что за ориентацию микрофибрилл целлюлозы ответственны микротрубочки. Этим достигается значительная прочность (и твердость) вторичной оболочки. По мере того как число слоев фибрилл целлюлозы становится больше, и толщина стенки увеличивается, она теряет эластичность и способность к росту. Во вторичной клеточной стенке содержание целлюлозы значительно возрастает (в некоторых случаях к) 60% и более). По мере дальнейшего старения клеток матрикс оболочки может заполняться различными веществами — лигнином, суберином. Лигнин - полимер, образующийся путем конденсации ароматических спиртов. Включение лигнина сопровождается одревеснением, увеличением прочности и уменьшением растяжимости. Мономерами суберина являются насыщенные и ненасыщенные оксожирные кислоты. Пропитанные суберином клеточные стенки (опробковение оболочки) становятся труднопроницаемыми для воды и растворов. На поверхности клеточной стенки могут откладываться кутин и воск. Кутин состоит из оксожирных кислот и их солей, выделяется через клеточную стенку на поверхность эпидермальной клетки и участвует в образовании кутикулы. В состав кутикулы могут входить воска, которые также секретирует цитоплазма. Кутикула препятствует испарению воды, регулирует водно-тепловой режим тканей растений.

     Исследования позволили дать предположительную модель взаимосвязи и взаиморасположения всех перечисленных веществ в клеточной стенке. Согласно этой модели в первичной клеточной оболочке микрофибриллы целлюлозы располагаются либо беспорядочно, либо перпендикулярно (в основном) продольной оси клетки. Между микрофибриллами целлюлозы находятся молекулы гемицеллюлозы, которые, в свою очередь, связаны через пектиновые вещества с белком. При этом последовательность веществ следующая: целлюлоза - гемицеллюлозы — пектиновые вещества — белок — пектиновые вещества - гемицеллюлозы — целлюлоза. Микрофибриллы целлюлозы и вещества матрикса оболочки связаны между собой. Единственными нековалентными связями являются водородные между целлюлозными микрофибриллами и гемицеллюлозой (по преимуществу ксилоглюканом). Между ксилоглюканом и пектиновыми веществами, так же как и между пектиновыми веществами и белком экстенсином, возникают ковалентные связи.

     Клеточная стенка растительной клетки пронизана плазмодесмами. В клеточной стенке они могут располагаться равномерно или группами. Плазмодесмы обнаружены в клетках всех групп растений, за исключением репродуктивных клеток. Они каждые 100 мкм2  клеточной оболочки имеется примерно 10-30 плазмодесм. Плазмодесма представляет собой канал (пору) шириной до 1 мкм, выстланный плазмолеммой. В центре поры имеется десмотрубка, которая образована мембранами эндоплазматической сети соседних клеток. Десмотрубка окружена белками и слоем цитоплазмы, которая соединяется с цитоплазмами соседних клеток. Благодаря плазмодесмам цитоплазма всех клеток объединена в единое целое — симпласт. Взаимосвязанная система клеточных стенок и межклеточных промежутков называется апопласт (свободное пространство). Симпласт и апопласт являются важнейшими путями передвижения воды и минеральных веществ между клетками. Одним из путей регуляции транспортной функции является подвижность структуры плазмодесм (Ю.В. Гамалей) и объем свободного пространства.

     Толщина клеточной стенки колеблется у разных видов растений от десятых долей до 10 мкм. Так, клетки кортикальной паренхимы более тонкие, а специализированные клетки эпидермиса, ксилемы, флоэмы и другие — более толстые. У клетки отдельные стороны клеточной стенки могут различаться по толщине, количеству плазмодесм. Клеточная стенка внешней стороны клетки эпидермиса толще, имеет меньше плазмодесм, чем внутренняя сторона этой клетки.

     Между клеточными оболочками двух соседних клеток в местах их соприкосновения имеется так называемая срединная пластинка; в состав срединной пластинки входят пектиновые вещества, главным образом в виде пектатов кальция (кальциевая соль пектиновой кислоты). Эти вещества как бы цементируют, склеивают растущие клетки. При недостатке кальция пектиновые вещества превращаются в слизь, наблюдается ослизнение ткани, и клетки разъединяются (мацерация ткани). При созревании плодов пектиновые вещества срединных пластинок, склеивающие клетки, переходят в растворимую форму и благодаря этому плоды становятся мягкими. Срединная пластинка является первым слоем, образующимся при делении клетки.

Информация о работе Структурная и функциональная организация клетки как целостной живой системы