Автор работы: Пользователь скрыл имя, 18 Февраля 2013 в 01:00, шпаргалка
Доминантный признак — признак, проявляющийся у гибридов первого поколения при скрещивании чистых линий. Результат наличия доминантного аллеля. Обычно «дикий тип», то есть вариант, присущий большинству особей природных популяций — это доминантный признак. Например, чёрная окраска перьев у грачей — доминатный признак, а редко встречающаяся белая окраска, вызванная неспособностью синтезировать пигмент — рецессивный
21. Изучение спонтанного мутационного процесса
Спонтанный мутагенез, т.е.
процесс возникновения мутаций
в организме в отсутствие намеренного
воздействия мутагенами, представляет
собой конечный результат суммарного
воздействия различных
Причины возникновения спонтанных мутаций можно разделить на:
• экзогенные (естественная радиация, экстремальные температуры и др.);
• эндогенные (спонтанно
возникающие в организме
Организм человека за год поглощает в среднем 0,095 рад энергии ионизирующих излучений, поступающих от естественной радиации (у-излучение Земли, космические лучи, радиоактивные элементы земной коры и атмосферы такие, как радон, углерод С , калий К40 и др.). Эта доза зависит от высоты над уровнем моря и географической широты. Кроме того, радиация выше в районах, где есть выходы на поверхность первичных пород. У человека доля мутаций, индуцированных естественной радиацией составляет до 25%, а у дрозофилы —лишь 0, 1% всех спонтанных мутаций.
Относительно УФ-излучения выше уже было указано, что оно практически не играет никакой роли в возникновении мутаций в половых клетках эукариот, не обладая достаточной проникающей способностью. В то же время, у одноклеточных организмов и вирусов под действием ультрафиолета образуется значительная часть спонтанных мутаций.
Замечено, что в высокогорных, а также арктических условиях растительность представлена преимущественно полиплоидными формами, так как резкие перепады температур в период вегетации растений ведут к увеличению частоты спонтанных геномных мутаций. Увеличение температуры окружающей среды на каждые 10 °С увеличивает частоту мутаций в 5 раз.
Основным источником спонтанных мутаций служат эндогенные факторы, приводящие к повреждению генов и хромосом в процессе нормального клеточного метаболизма. Результат их действия — ошибки генетических процессов репликации, репарации и рекомбинации.
Ошибки репликации:
• таутомерные переходы азотистых оснований приводят при репликации к спонтанным транзициям и трансверсиям;
• ошибки в работе ДНК-полимераз
обусловливают
• химические модификации оснований (например, при встраивании 5-метилцитозина происходит замена GC - AT, т.к. 5-метилцитозин при последующей репликации может образовывать водородные связи с аденином).
Ошибки репарации:
• например, мутации в гене uvrD, отвечающем за репарацию одноцепочечных разрывов при УФ-облучении Е.сой\ в сотни раз повышает частоту спонтанных транзиций AT — GC.
Ошибки рекомбинации:
• в результате неравного внутригенного кроссинговера в мейозе происходят вставки либо выпадения оснований.
К эндогенным факторам спонтанного мутагенеза относится и мутагенная активность специальных элементов генома: генов-мутаторов и эндогенных метаболитов. Так генетическая стабильность большинства генов определяется не только особенностями их строения, но и уровнем общей мутабильности клетки, контролируемой генами-мутаторами и антимутаторами, которые по-видимому, задействованы в процессах репликации, репарации и рекомбинации ДНК. К классу эндогенных метаболитов относятся спонтанно возникающие химические соединения, вызывающие мутагенный эффект. Например, при заживлении физических травм у растений, образуются каллусные клетки, которые в норме отсутствуют, при этом индуцируется синтез дополнительных ферментов и метаболитов, необходимых для заживления раны. Если в каллуснои ткани возникают почки, то часть побегов из этих почек оказываются полиплоидными, т.е. метаболиты каллуснои ткани способны вызывать геномные мутации. Мутагенным эффектом обладают и свободные радикалы, возникающие при перекисном окислении липидов клеточных мембран.
Среди структурных факторов, определяющих эндогенные механизмы мутагенеза, можно выделить такие;
• наличие прямых и обратных повторов вблизи места перестройки;
• высокая концентрация CpG-динуклеотидов;
• наличие внегенных последовательностей ДНК, гомологичных фрагментам структурного гена;
• мобильные элементы генома.
Два первых фактора реализуются в процессе репликации ДНК хромосом, третий — в процессе рекомбинации.
Вследствие скользящего нарушения спаривания (slipping mispairing) родительской и дочерней цепей ДНК при репликации нередко образуются петли. Их формирование обусловлено наличием в первичной структуре ДНК прямых и инвертированных повторов, идентичных повторяющихся последовательностей, структур шпилечного типа, квазипалиндромных последовательностей и симметричных элементов генома (например, CTGAAGTC). Эти петли либо исчезают в результате репарационного процесса (и тогда возникают делеции), либо сохраняются и приводят к дупликациям и ин-серциям; при этом сформировавшиеся изменения закрепляются в последующих циклах репликации. Именно в последнем случае возможно появление мутации экспансии.
Возникновение мутаций зависит от особенностей первичной структуры ДНК в месте перестройки, и ряд исследователей полагают, что повышенной эндогенной мутагенностью обладают вообще все последовательности ДНК, находящиеся в состоянии изгиба (bens DNA). Именно такая конформационная структура ДНК свойственна: промоторным частям генов, местам начала репликации (origins of replication), месгам контакта хромосом с ядерным матриксом, т.е. тем участкам ДНК, на которые воздействуют топоизомеразы, участвующие в процессах репликации, транскрипции, рекомбинации, в том числе, и негомологичной (незаконной). Результатом последней могут быть не только внутри генные мутации, но и крупные структурные перестройки хромосом (транслокации, инверсии и др.).
Наиболее распространенные спонтанные нарушения ДНК в ходе репликации и репарации - потеря оснований и дезаминирование, к которому особенно чувствительны цитозиновые остатки. В настоящее время показано, что у позвоночных почти половина всех цитозиновых остатков в ДНК метилирована в 5-м положении, в областях повторов 5'-CpG-3'. При дезаминировании 5-метилцитозин превращается в тимин. При последующей репликации возникший в результате деза-минирования ошибочный вариант (T-G) либо корректируется (C-G), либо приводит к мутациям типатранзиций; (T-G) или (С-А). Гены, имеющие в своей структуре большой процент CpG-оснований, спонтанно мутируют по типу транзиций особенно часто. Таковы, например, ген фенилаланингидроксилазы у больных фе-нилкетонурией, гены факторов VIII и IX свертывания крови и др.
Еще одна существенная причина эндогенного мутагенеза — наличие псевдогенов -тесно сцепленньгх с генами гомологичных последовательностей ДНК. В мейозе результатом такой структурной особенности может быть неравная гомологичная рекомбинация и, как следствие - генная конверсия, сопровождающаяся делениями, дупликациями и другими перестройками. Так, очевидная ключевая рольошибок рекомбинации вэтио-логии нарушений структуры была установлена при анализе гигантского по размерам (2,2 млн, п.н.) гена дистрофина, мутации которого (в 60% случаев являющиеся делециями) ведут к миопатии Дюшенна. Подавляющее большинство этих делеций, захватывающих один или несколько соседних экзонов, сосредоточено в двух «горячих» районах. Наблюдаемая частота внутригенных рекомбинаций почти в 4 раза выше, чем можно предполагать, исходя из размеров генадистрофина. В одной из этих «горячих» точек (интрон 7) недавно обнаружен кластер транспозоноподобных повторяющихся последовательностей. Единичные пока наблюдения свидетельствуют о реальном перемещении этих элементов по типу конверсии и об их интеграции в структурные гены аденозиндезаминазы, аполи-попротеина С, факторов VIII и IX свертывания крови, кальмодулина.
22. Определение частоты мутации
Определение частот спонтанных
мутаций организмов разных видов
проводят с помощью разных способов,
один из которых связан с определением
частоты таких мутаций на репликацию
пары азотистых оснований в
Определенные к настоящему времени частоты мутаций на репликацию пары оснований и общие частоты генных мутаций у разных организмов показаны в табл. 13.
В случае человека частоты спонтанных мутаций определяют измерением прямых мутаций в пределах разных генов, которые очень чувствительны к мутациям независимо от того, являются ли условия для организмов ограничивающими или селективными.
Рассмотрим конкретный пример определения частоты спонтанных мутаций, например, среди родившихся за один год 242 257 детей 7 оказались больными ахондоплазией. Следовательно, 7 : 242 257´1 : 2 (два аллеля на зиготу) = 1,4´10-6. Таким образом частота ахондоплазии составляет 1,4 х 10-5. Одни гены вообще устойчивы к спонтанным мутациям, другие спонтанно мутируют чаще, третьи так часто, что их носители являются мозаиками мутантных (мутировавших) и немутантных (немутировавших) генов.
Средние частоты мутаций по многим генам у человека и домашних животных составляют примерно 1´10-9, что значительно выше частоты мутаций микроорганизмов. Больше того, между частотами спонтанных мутаций по разным генам человека или домашних млекопитающих существуют значительные различия, достигающие 100 раз, а то и более. Подлинные причины этих различий неизвестны, хотя для их объяснения и предложено несколько гипотез. Одна из них заключается в том, что наиболее чувствительны к мутациям гены больших размеров, поскольку в них содержится много азотистых оснований и существует большая вероятность мутации отдельных из них. По другой гипотезе наиболее чувствительными к мутациям являются гены, располагающиеся в районах хромосом, являющихся «горячими» точками.
Уже давно установлены гены, которые оказывают влияние на мутабельность других генов. Такие гены получили название мута-торных генов. Они содержатся в геноме организмов почти всех изученных генетически к настоящему времени видов.
Определение частот спонтанных мутаций позволяет определить вероятность мутаций в каждом новом поколении людей: 1´10-6 мутаций на ген х 5 х 10~4 генов (гаплоидный геном) = 5´10-2 мутаций на гамету (5 : 100 или 1 : 20). Далее, 1 : 20´2 гаметы на зиготу = 1 : 10 случаев, что каждая гамета несет новую мутацию. Возможно, что это очень высокая частота, но ее достоверность определяется тем, что большинство мутаций рецессивно и, следовательно, не экспрессируется у гетерозигот.
23. Получение ауксотрофных мутантов и их идентификация
Mетод выделения ауксотрофных мутантов в культуре бактерий дикого типа: заключается в добавлении пенициллина в минимальную среду <minimal medium> на 1 час, в результате чего выживают только нерастущие ауксотрофные мутанты, для выделения которых (с одновременным удалением пенициллина) используют фильтрацию (или добавление фермента пенициллиназы).
Однако основной путь селекции
продуцентов аминокислот —
24. Изучение выживаемости и частоты мутации
Мутации в отличие от репарируемых повреждений ДНК — сравнительно редкие события. При расчете на единичный ген одна из каждых 100 000-1 000 000 гамет содержит вновь возникшую мутацию. Однако для генотипа в целом мутация — явление совсем не редкое: если принять число генов у человека равным 50 ООО, то получается, что значительная часть гамет имеет новую мутацию. Большая часть мутаций резко нарушает жизнеспособность клетки: в результате мутаций гибнет до 80 % гамет на самых ранних стадиях развития.
Частоту мутаций, сохранившихся в процессе эволюции, можно оценить по различиям первичной структуры какого-либо белка у разных животных. Например, известна первичная структура цитохрома с примерно 100 разных видов организмов. Сравнивая число аминокислотных замен в цитохроме с некоторых видов по сравнению с цитохромом с человека (табл. 5.1), легко видеть, что различия тем больше, чем меньше филогенетическое родство. Зная время, потребовавшееся для эволюции, например от земноводных до млекопитающих, можно рассчитать частоту замен. Для цитохрома с она оказалась равной трем заменам за 100 млн лет; для других белков получены величины от 0,2 до 60 замен за 100 млн лет. Конечно, эти величины отражают лишь незначительную часть всех мутаций, поскольку большинство из них являются вредными и элиминируются в ходе естественного отбора. Отметим также, что при таком методе определяется частота мутаций одного гена, а не всего генома.
25-27 Опасность ГМО
Некоторые ученые высказывают опасения, что ГМО могут представлять опасность для здоровья людей, в связи с тем, что они, возможно:
увеличивают риск возникновения пищевых аллергий и отравлений;
способны вызывать мутации;
способствуют образованию опухолей;
вызывают невосприимчивость к антибиотикам.
Существует определенная вероятность, что чужеродная ДНК способна накапливаться в организме человека, а также попадать в ядра клеток эмбрионов, что может привести к врожденным уродствам и даже гибели плода.
В группу риска попадают дети до 4-х лет, т. к. они меньше всего защищены от воздействия чужеродных генов.
Аллергенность ГМО
Более половины трансгенных белков, обеспечивающих устойчивость растений к насекомым, грибковым и бактериальным заболеваниям токсичны и аллергенны и для человека и/или млекопитающих.
Многие дети в США и Европе заболели угрожающей жизни аллергией на арахис и другие продукты. Существует возможность, что введение гена в растение может создать новый аллерген или вызвать аллергическую реакцию у чувствительных людей.
Предложение включить ген альбумина из бразильских орехов в сою было отклонено из-за страха вызывать неожиданные аллергические реакции.