Автор работы: Пользователь скрыл имя, 12 Апреля 2012 в 19:31, контрольная работа
Косвенные измерения широко распространены в тех случаях, когда искомую величину невозможно или слишком сложно измерить непосредственно или когда прямое измерение дает менее точный результат. Роль их особенно велика при измерении величин, недоступных непосредственному экспериментальному сравнению, например размеров астрономического или внутриатомного порядка.
1. Классификация измерений
2. Стандартизация: основные понятия, цели, задачи, принципы.
Рецензия
преподавателя по контрольной работе
: метрология.
ЗАДАНИЕ ПО КОНТРОЛЬНОЙ РАБОТЕ МЕТРОЛОГИЯ.
1. Классификация измерений
2. Стандартизация: основные понятия, цели, задачи, принципы.
Содержание.
Вступление: что такое метрология. стр………………………………3.
1. Классификация измерений.стр…………………………………….4.
2.
Стандартизация: основные понятия.стр...................
3. Цели стандартизации. стр……………………………………………………………11.
4. Задачи стандартизации. стр………………………………………………………….16.
5. Принципы стандартизации. стр…………………………………………………….19.
6. Библиографический список. стр………………………………….25.
Метрология - наука об измерениях
В практической жизни человек всюду имеет дело с измерениями. На каждом шагу встречаются измерения таких величин, как длина, объем, вес, время и др. Измерения являются одним из важнейших путей познания природы человеком. Они дают количественную характеристику окружающего мира, раскрывая человеку действующие в природе закономерности. Все отрасли техники не могли бы существовать без развернутой системы измерений, определяющих как все технологические процессы, контроль и управление ими, так и свойства и качество выпускаемой продукций. Велико значение измерений в современном обществе. Они служат не только основой научно-технических знаний, но имеют первостепенное значение для учета материальных ресурсов и планирования, для внутренней и внешней торговли, для обеспечения качества продукции, взаимозаменяемости узлов и деталей и совершенствования технологии, для обеспечения безопасности труда и других видов человеческой деятельности. Особенно возросла роль измерений в век широкого внедрения новой техники, развития электроники, автоматизации, атомной энергетики, космических полетов. Высокая точность управления полетами космических аппаратов достигнута благодаря современным совершенным средствам измерений, устанавливаемым как на сам Большое разнообразие явлений, с которыми приходится сталкиваться, определяет широкий круг величин, подлежащих измерению. Во всех случаях проведения измерений, независимо от их космических аппаратах, так и в измерительно-управляющих центрах. Большое разнообразие явлений, с которыми приходится сталкиваться, определяет широкий круг величин, подлежащих измерению. Во всех случаях проведения измерений, независимо от измеряемой величины, метода и средства измерений, есть общее, что составляет основу измерений - это сравнение опытным путем данной величины с другой подобной ей, принятой за единицу. При всяком измерении мы с помощью эксперимента оцениваем физическую величину в виде некоторого числа принятых для нее единиц, т.е. находим ее значение. В настоящее время установлено следующее определение измерения: измерение есть нахождение значения физической величины опытным путем с помощью специальных технических средств. Отраслью науки, изучающей измерения, является метрология. Слово "метрология" образовано из двух греческих слов: метрон - мера и логос - учение. Дословный перевод слова "метрология" - учение о мерах. Долгое время метрология оставалась в основном описательной наукой о различных мерах и соотношениях между ними. С конца прошлого века благодаря прогрессу физических наук метрология получила существенное развитие. Большую роль в становлении современной метрологии как одной из наук физического цикла сыграл Д. И. Менделеев, руководивший отечественной метрологией в период 1892 - 1907 гг. Метрология в ее современном понимании - наука об измерениях, методах, средствах обеспечения их единства и способах достижения требуемой точности. Единство измерений - такое состояние измерений, при котором их результаты выражены в узаконенных единицах и погрешности измерений известны с заданной вероятностью. Единство измерений необходимо для того, чтобы можно было сопоставить результаты измерений, выполненных в разных местах, в разное время, с использованием разных методов и средств измерений Точность измерений характеризуется близостью их результатов к истинному значению.
1. Классификация и основные характеристики измерений
Измерение является важнейшим понятием в метрологии. Это организованное действие человека, выполняемое для количественного познания свойств физического объекта с помощью определения опытным путем значения какой-либо физической величины .
Существует
несколько видов измерений. При
их классификации обычно исходят
из характера зависимости
По характеру зависимости измеряемой величины от времени измерения разделяются на статические - при которых, измеряемая величина, остается постоянной во времени.
Динамические в процессе которых измеряемая величина изменяется и является непостоянной во времени.
Статическими измерениями являются, например, измерения размеров тела, постоянного давления, динамическими - измерения пульсирующих давлений, вибраций.
По способу
получения результатов
Прямые - это измерения, при которых искомое значение физической величины находят непосредственно из опытных данных. Прямые измерения можно выразить формулой Q=X, где Q - искомое значение измеряемой величины, а X- значение, непосредственно получаемое из опытных данных.
При прямых измерениях экспериментальным операциям подвергают измеряемую величину, которую сравнивают с мерой непосредственно или же с помощью измерительных приборов, градуированных в требуемых единицах. Примерами прямых служат измерения длины тела линейкой, массы при помощи весов и др. Прямые измерения широко применяются в машиностроении, а также при контроле технологических процессов (измерение давления, температуры и др.).
Косвенные
- это измерения, при которых искомую
величину определяют на основании известной
зависимости между этой величиной
и величинами, подвергаемыми прямым
измерениям, т.е. измеряют не собственно
определяемую величину, а другие, функционально
с ней связанные. Значение измеряемой
величины находят путем вычисления
по формуле
где Q - искомое значение косвенно измеряемой величины, F - функциональная зависимость, которая заранее известна, - значения величин, измеренных прямым способом.
Примеры косвенных измерений: определение объема тела по прямым измерениям его геометрических размеров, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения.
Косвенные
измерения широко распространены в
тех случаях, когда искомую величину
невозможно или слишком сложно измерить
непосредственно или когда
Совокупные - это производимые одновременно измерения нескольких одноименных величин, при которых искомую определяют решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин.
Примером
совокупных измерений является определение
массы отдельных гирь набора (калибровка
по известной массе одной из них
и по результатам прямых сравнений
масс различных сочетаний гирь).
Пример. Необходимо произвести калибровку разновеса, состоящего из гирь массой 1, 2, 2*, 5, 10 и 20 кг (звездочкой отмечена гиря, имеющая то же самое номинальное значение, но другое истинное). Калибровка состоит в определении массы каждой гири по одной образцовой гире, например по гире массой 1 кг. Для этого про-ведем измерения, меняя каждый раз комбинацию гирь (цифры показывают массу отдельных гирь, - обозначает массу образцовой гири в 1 кг):
1=1обр+a
1+1обр=2+b
2*=2+c
1+1+2*=5+d и т.д.
Буквы a,b,c,d- означают грузики, которые приходится прибавлять или отнимать от массы гири, указанной в правой части уравнения, для уравновешивания весов. Решив эту систему уравнений, можно определить значение массы каждой гири.
Совместные - это производимые одновременно измерения двух или нескольких не одноимённых величин для нахождения зависимостей между ними.
В качестве
примера можно назвать
По условиям, определяющим точность результата, измерения делятся на три класса:
1. Измерения
максимально возможной
К ним
относятся в первую очередь эталонные
измерения, связанные с максимально
возможной точностью
К этому же классу относятся и некоторые специальные измерения, требующие высокой точности.
2. Контрольно-поверочные
измерения, погрешность
К ним
относятся измерения, выполняемые
лабораториями государственного надзора
за внедрением и соблюдением стандартов
и состоянием измерительной техники
и заводскими измерительными лабораториями,
которые гарантируют
3. Технические
измерения, в которых
Примерами
технических измерений являются
измерения, выполняемые в процессе
производства на машиностроительных предприятиях,
на щитах распределительных
По способу
выражения результатов
Абсолютными называются измерения, которые основаны на прямых измерениях одной или нескольких основных величин или на использовании значений физических констант.
Примером абсолютных измерений может служить определение длины в метрах, силы электрического тока в амперах, ускорения свободного падения в метрах на секунду в квадрате.
Относительными называются измерения отношения величины к одноименной величине, играющей роль единицы, или измерения величины по отношению к одноименной величине, принимаемой за исходную.
В качестве
примера относительных
Основными характеристиками измерений являются: принцип измерений, метод измерений, погрешность, точность, правильность и достоверность.
Принцип измерений - физическое явление или совокупность физических явлений, положенных в основу измерений. Например, измерение массы тела при помощи взвешивания с использованием силы тяжести, пропорциональной массе, измерение температуры с использованием термоэлектрического эффекта.
Метод измерений - совокупность приемов использования принципов и средств измерений. Средствами измерений являются используемые технические средства, имеющие нормированные метрологические свойства.
Погрешность измерений - разность между полученным при измерении X' и истинным Q значениями измеряемой величины: ∆=X`-Q
Погрешность вызывается несовершенством методов и средств измерений, непостоянством условий наблюдения, а также недостаточным опытом наблюдателя или особенностями его органов чувств.
Точность измерений - это характеристика измерений, отражающая близость их результатов к истинному значению измеряемой величины.
Количественно точность можно выразить величиной, обратной модулю относительной погрешности: Например, если погрешность измерений равна %=то точность равна
Правильность измерения определяется как качество измерения, отражающее близость к нулю систематических погрешностей результатов (т.е. таких погрешностей, которые остаются постоянными или закономерно изменяются при повторных измерениях одной и той же величины). Правильность измерений зависит, в частности, от того, насколько действительный размер единицы, в ко-торой выполнено измерение, отличается от ее истинного размера (по определению), т.е. от того, в какой степени были правильны (верны) средства измерений, использованные для данного вида измерений.
Важнейшей
характеристикой качества измерений
является их достоверность; она характеризует
доверие к результатам
категории: достоверные и недостоверные, в зависимости от того, известны или неизвестны вероятностные характеристики их отклонений от истинных значений соответствующих величин. Результаты измерений, достоверность которых неизвестна, не представляют ценности и в ряде случаев могут служить источником дезинформации.
Наличие погрешности ограничивает достоверность измерений, т.е. вносит ограничение в число достоверных значащих цифр числового значения
измеряемой
величины и определяет точность измерений.
Классификация и основные характеристики
измерений.