Лекции по "Концепции современного естествознания"

Автор работы: Пользователь скрыл имя, 20 Июня 2011 в 20:30, курс лекций

Описание

Естественные и гуманитарные науки. Наука занимается изучением объективно существующих ( т.е. существующих независимо от чьего-либо сознания) объектов и явлений природы. Вопрос о том, существует ли окружающий нас мир сам по себе или он является продуктом деятельности разума (принадлежащего некому высшему существу или каждому конкретному индивиду) составляет суть т.н. основного вопроса философии, классически формулируемом в виде дилеммы о первичности материи или сознания.

Работа состоит из  1 файл

Концепции современнго естествознания (лекции).DOC

— 1.51 Мб (Скачать документ)
  1. ,

где через обозначено состояние, соответствующее “равномерному распределению химических связей” , к признанию реального существования которого химия шла достаточно долгим путем.

     Для описания измеряемых физических величин F в квантовой механике вводятся операторы , действия которых на векторы состояний в общем случае приводят к появлению новых векторов:

(6)    

(так на языку математики описывается тот факт, что процедура измерения оказывает влияние на изучаемую квантово-механическую систему).  Наблюдаемое на опыте среднее значение физической величины в заданном состоянии системы определяется диагональным матричным элементом оператора этой величины:

  1.     .

     Т.о. математический аппарат современной квантовой механики ориентирован на вычисления вероятностей пребывания физических систем в тех или иных состояниях и средних значений физических величин, характеризующих эту систему, т.е. как раз те величины, которые могут быть измерены в реальном эксперименте.

     Эволюция во времени квантово-механических систем. Для описания изменения системы во времени вводится оператор эволюции, связывающий ее состояния в два близких момента:

  1.     .

Если оператор эволюции известен, его последовательное применение к исходному состоянии системы позволяет проследить за ее временным развитием, т.е. решить основную задачу естествознания. Обычно оператор эволюции за бесконечно малый  промежуток времени записывают в виде

  1. ,

где  - оператор Гамильтона. Подстановка выражения (9) в (8) приводит к основному уравнению квантовой механики

  1.   ,

играющему столь же важную роль в квантовой теории, как законы Ньютона в классическом естествознании.  По своему смыслу оператор Гамильтона является обобщением классического понятия энергии, поскольку для частного случая стационарной изолированной системы (где энергия сохраняется) уравнение (10) имеет решение

  1. ,

совпадающее с волной ДеБройля и удовлетворяющее стационарному уравнению

  1. .

     Стационарные состояния квантово-механических систем. При решении уравнения (11) определяются стационарные состояния системы и соответствующие им значения энергии W. В случае дискретного набора разрешенных энергий говорят об энергетических уровнях системы, в случае непрерывного набора - о непрерывном спектре энергий.  Например, базисные состояния и молекулы бензола не являются стационарными: являющаяся следствием соотношения неопределенности неточная локализация электронов в пространстве приводит к возможности перехода этих состояний друг в друга (т.н. туннельный эффект).  Уравнение (12) позволяет отыскать два сохраняющихся во времени состояния, которые оказываются симметричной и антисимметричной линейными комбинациями базисных:

  1. ,

и определить соответствующие им энергии

  1. .

Т.о. наличие возможности переходов между двумя эквивалентными состояниями приводит  к возникновению в системе двух энергетических уровней вместо одного (рис. 20_3). Система может находиться лишь в одном из построенных стационарных состояний ( ), но в каждом из них вероятность найти классически осмысленную конфигурацию или одинакова и равна 0.5. Симметричное стационарное состояние энергетически более выгодно и наиболее часто реализуется в природе.

     Аммиачный мазер.  Существует множество разнообразных систем, обладающих двумя  базисными состояниями, не сохраняющимися во времени. К ним относится молекула аммиака,  с классической точки зрения имеющая две конфигурации  или , способные превращаться друг в друга из-за туннельного эффекта (рис. 20_4). Стационарные энергетические уровня молекулы разделены зазором, энергетически соответствующем высокочастотному радиоизлучению. Настроенное в резонанс внешнее электромагнитное поле способно вызывать переходы между этими состояниями, которых сопровождаются поглощением или излучением энергии в виде электромагнитных волн (на другом языке - фотонов).  Ансамбль из молекул, находящихся в верхнем энергетическом состоянии способен только излучать энергию, т.е. взаимодействовать с электромагнитным полем, усиливая его. На описанном принципе основана работа первого мазера - лазера, работающего в радио диапазоне излучения.

     Природа химической связи. Системой с двумя состояниями является простейшее химическое соединение - молекулярный ион водорода (рис. 20_5). Как и в рассмотренных выше случаях причиной не сохранения во времени выбранных базисных состояний является туннельный эффект. При сближении ядер вероятность туннельного перехода электрона от одного  к другому возрастает , что  приводит к увеличению расстояния между подуровнями и делает симметричное  состояние иона энергетически более выгодным. “Стремясь к снижению полной энергии”, ядра сближаются, что воспринимается как результат действия дополнительной силы, обеспечивающей возникновение химической связи.

     Природа электростатических и ядерных взаимодействий. В общих чертах сходный механизм лежит в основе современных представлений о возникновении электростатических взаимодействий между электрическими зарядами. Вместо “туннелирующего” электрона в молекулярном ионе роль переносчика электрических взаимодействий между зарядами играют виртуальные фотоны, обнаружения которых в реальном эксперименте оказывается принципиально невозможным.

      Сходный механизм был предложен и в случае сильных ядерных взаимодействий. Быстрый спад ядерных сил при увеличении расстояний привел к допущению, что переносчиком взаимодействия является на обладающий нулевой массой покоя фотон, а весьма тяжелая частица с массой,  превосходящей электронную примерно в 200 раз. Вскоре такие частицы были обнаружены в космических лучах (пи-мезоны), но дальнейшие эксперименты показали их непричастность к ядерным силам.  Однако выдвинутая гипотеза все же оказалась жизнеспособной: впоследствии были обнаружены похожие на ранее открытые мезоны частицы, свойства которых согласовывались с предсказанными на основе анализа ядерных сил.

     Электропроводность кристаллов. Системы с двумя состояниями обладают двумя энергетическими подуровнями . Увеличение числа эквивалентных состояний приводит к появлению большего числа подуровней.  Примером системы с большим числом состояний может служить электрон в идеальном кристалле, который может быть локализован вблизи каждого из N регулярно расположенных ионов, что соответствует набору базисных состояний: (рис. 20_6). Самой низкой энергии соответствует симметричная линейная комбинация базисных состояний:

  1.   ,

другие ортогональные линейные комбинации дают систему из близкорасположенных друг к другу N энергетических подуровней. При увеличении числа атомов в кристалле подуровни сливаются в сплошную полосу - энергетическую зону, соответствующую непрерывному набору разрешенных значений энергии электрона. Поскольку свободная частица в пустом пространстве так же может обладать энергией из непрерывного набора, поведение электрона в идеальном бесконечном кристалле весьма сходно с поведением свободной частицы. Этим объясняется возможность существования электропроводности в твердых кристаллических телах.

     Уравнение Шредингера. При описании движения микрочастиц в пространстве в качестве базисного  удобно выбрать непрерывный набор состояний с определенными координатами , для каждого из которых может быть записано уравнение, аналогичное (10). Конкретный вид оператора Гамильтона для этого случая был правильно угадан Шредингером и имеет вид, аналогичный классическому выражению для механической энергии:

  1. ,

где - оператор импульса, - оператор потенциальной энергии. Наибольший практический интерес представляют вероятности обнаружить находящуюся в стационарном состоянии частицу в заданной точке пространства R. В соответствии с общими правилами квантовой механики эта вероятность дается квадратом модуля соответствующей амплитуды, называемой волновой функцией:

  1. .

     Анализ математических свойств стационарного уравнения Шредингера

показывает, что в случаях, когда область классически возможного движения частицы в пространстве ограничена, разрешенным является только дискретный набор энергетических уровней. При неограниченном движении энергетический спектр непрерывен.

     В простейшем случае стационарных решений для атома водорода связанным состояниям (электрон находится вблизи ядра) соответствует набор разрешенных значений энергии, полностью совпадающий с вычисленными в рамках первой модели Бора и прекрасно согласующийся с экспериментом (рис. 20_7).  В ионизованном состоянии (электрон ушел от ядра на бесконечно большое расстояние) частица может обладать любым значением энергии.

     
 
 

21. Атомы и молекулы

     Спин. Принцип запрета Паули. Строение и свойства атома могут быть объяснены, исходя их обсуждавшихся первопринципов квантовой механики, дополненных еще двумя утверждениями:

1. Помимо трех “классических” степеней свободы, связанных с описанием положения частицы в пространстве (имеется в виду нерелятивистское описание), электрон обладает дополнительной “внутренней” степенью свободы, называемой спином. Соответствующая спину четвертая координата может принимать только два дискретных  значения, которые удобно считать равными +1/2 и -1/2 (вполне допустимы и другие терминологии для обозначения двух базисных состояний: “спин вверх” и “спин вниз”, “вращение вправо” и “вращение влево”, и ,  т.д.).

2. Для электронов строго выполняется принцип запрета Паули, согласно которому невозможно существование двух электронов в одинаковых квантовомеханических состояниях.

     В дальнейшем будет обсуждаться вопрос о глубокой внутренней связи между этими двумя утверждениями.

     Атом водорода. Вырождение энергетических уровней. Наличие у нерелятивистского электрона четырех степеней свободы требует задания его состояния при помощи четырех параметров. Для описания положения электрона в пространстве удобно использовать полярную систему координат с началом отсчета, совмещенным с ядром атома (рис. 21_1). Соответствующие базисные состояния удобно обозначать  как .  Сохраняющиеся во времени состояния, получаемые в результате решения стационарного уравнения Шредингера, соответствуют определенным значениям энергии, момента импульса, проекции момента на ось z и одному из двух возможных значений спиновой переменной: .  Принимающие дискретный набор значений параметры, характеризующих стационарное состояние, называются квантовыми числами. Главное квантовое число n определяет энергию электрона в стационарном состоянии:

Информация о работе Лекции по "Концепции современного естествознания"