Автор работы: Пользователь скрыл имя, 28 Марта 2012 в 17:29, контрольная работа
Мегамир или космос (от греч. hosmos – мир) – термин, идущий из древнегреческой философии для обозначения мира как структурно организованного и упорядоченного целого. Космосом греки называли Мир упорядоченный, прекрасный в своей гармонии в отличие от Хаоса – первозданной сумятицы. Сейчас под космосом понимают все находящееся за пределами атмосферы Земли.
Введение…………………………………………………………………………...3
Глава 1. Звезды………………………………………………………...………….9
Глава 2. Планетарные системы…………………………………………………13
Глава 3. Галактики.………………………………………………………………17
Список используемой литературы……………………………………………...20
Кафедра химии и технологии
живых систем
Контрольная работа
По дисциплине «Концепции современного естествознания»
Тема: Структура мегамира: звезды, планетарные системы, галактики
Владивосток 2011
СОДЕРЖАНИЕ:
Введение…………………………………………………………
Глава 1. Звезды………………………………………………………...
Глава 2. Планетарные системы…………………………………………………13
Глава 3. Галактики.……………………………………………………
Список используемой литературы……………………………………………...
ВВЕДЕНИЕ
Мегамир или космос (от греч. hosmos – мир) – термин, идущий из древнегреческой философии для обозначения мира как структурно организованного и упорядоченного целого. Космосом греки называли Мир упорядоченный, прекрасный в своей гармонии в отличие от Хаоса – первозданной сумятицы. Сейчас под космосом понимают все находящееся за пределами атмосферы Земли. Иначе космос называют Вселенной (место вселения человека). Вселенную в целом изучает астрономия и ее интенсивно развивающийся раздел – космология.
Мир един, гармоничен и одновременно имеет многоуровневую организацию. Вселенная – это мегамир. Нет жесткой границы, однозначно разделяющей микро-, макро– и мегамиры. При несомненном качественном отличии они взаимосвязаны. Так, наша Земля представляет макромир, но в качестве одной из планет Солнечной системы она одновременно выступает и как элемент мегамира. Вселенная представляет собой упорядоченную систему отдельных взаимосвязанных элементов различного порядка. Это небесные тела (звезды, планеты, спутники, астероиды, кометы), планетные системы звезд, звездные скопления, галактики. Например: Солнце – это звезда, Земля – это планета, Луна – это спутник Земли. Небесные тела, находящиеся в зоне существенного действия силы тяготения звезды, образуют ее планетную систему.
Так, Солнечная система (или планетная система) – совокупность небесных тел – планет, их спутников, астероидов, комет, обращающихся вокруг Солнца под действием силы его тяготения. В Солнечную систему входят 9 планет, их спутники, свыше 100 тысяч астероидов, множество комет.
Все сведения, накопленные человечеством о Вселенной, – результат наблюдений. Первые астрономические знания были получены еще мыслителями древнего мира. Астрономы стран Древнего Востока – Египта, Вавилонии, Индии, Китая – научились предсказывать наступления затмений, следили за движением планет. Эти астрономические знания, накопленные еще в VII–VI вв. до н. э., заимствовали древние греки.
В VI в. до н. э. великий ученый и философ Древней Греции Аристотель фактически выдвинул идею геоцентрического (от греч. geo – земля) строения Вселенной. Аристотель считал, что Земля и все небесные тела шарообразны. Шарообразность Луны он доказал, изучая ее фазы, а шарообразность Земли объяснил характером лунных затмений. На диске Луны край земной тени всегда круглый, а это может быть только при условии шарообразности Земли. Аристотель считал Землю центром Вселенной, крупнейшим ее телом, вокруг которого вращаются все небесные тела. Вселенная, по мнению Аристотеля, имеет конечные размеры, ее как бы замыкает сфера звезд. Таким образом, по Аристотелю, Земля – неподвижный центр Вселенной.
После Аристотеля некоторые ученые высказывали смелые и правильные догадки об устройстве Вселенной. Так, живший в III в. до н. э. греческий астроном Аристарх Самосский считал, что Земля обращается вокруг Солнца. Расстояние до Солнца он определял в 600 диаметров Земли. На самом деле вычисленное им расстояние в 20 раз меньше действительного, но во времена Аристарха Самосского и оно казалось невообразимо огромным. Однако это расстояние мыслитель считал ничтожным по сравнению с расстояниями от Земли до звезд. Но гениальные мысли Аристарха Самосского не были поняты современниками.
Во II в. до н. э. окончательно сформировалась геоцентрическая система мира. Александрийский астроном Птолемей обобщил существовавшие до него представления. Согласно модели Птолемея, вокруг шарообразной и неподвижной Земли движутся Луна, Меркурий, Венера, Солнце, Марс, Юпитер, Сатурн и небо неподвижных звезд. Движение Луны, Солнца, звезд правильное круговое, а движение планет гораздо сложнее. Каждая из планет, по мнению Птолемея, движется не вокруг Земли, а вокруг некоторой точки. Эта точка, в свою очередь, движется по окружности, в центре которой находится Земля.
Гелиоцентрическая система (от греч. helios – солнце) связана с именем польского ученого Николая Коперника (XV в.). Он возродил гипотезу Аристарха Самосского о строении мира: Земля уступила место центра Солнцу и оказалась третьей по счету среди вращающихся по круговым орбитам планет. Коперник путем сложных математических расчетов объяснил видимые передвижения планет вокруг Солнца.
Учение Коперника имело революционное значение для последующего развития науки. После 30 лет упорного труда, долгих размышлений и сложных математических расчетов ученый доказал, что Земля – только одна из планет, а все планеты обращаются вокруг Солнца. При этом звезды Коперник считал неподвижными. Он полагал, что Вселенная ограничена сферой неподвижных звезд, которые расположены на невообразимо огромных, но все-таки конечных расстояниях от нас и от Солнца. Таким образом, в учении Коперника утверждались представления об огромных размерах Вселенной, но не бесконечности ее.
Смело развил идею бесконечности Вселенной великий итальянский мыслитель Джордано Бруно (XVI в.). По Бруно, огромное Солнце – всего только одна из звезд. Каждая звезда – такое же Солнце. Звезд бесконечное множество, они окружены планетами, на которых может быть жизнь. Бруно высказал догадки, что и Солнце, и звезды вращаются вокруг своих осей, а в Солнечной системе, кроме известных планет, существуют и другие, пока еще не открытые.
С изобретением телескопа итальянский ученый Галилео Галилей в первой половине XVII в. сделал выдающиеся открытия, которые подтвердили учение Коперника и догадки Бруно. Галилей пришел к выводу, что вращение присуще не только Земле, но и другим небесным телам. Обнаружив спутники у Юпитера, Галилей пришел также к выводу о том, что не только Земля и Солнце могут быть центрами обращения небесных тел. Одновременно с Галилеем выдающиеся открытия в астрономии сделал немецкий ученый Иоганн Кеплер, сформулировав законы движения тел в Солнечной системе. Таким образом, к началу XVIII в. были достигнуты выдающиеся успехи в астрономии: открыты строение Солнечной системы и законы движения входящих в нее небесных тел; стало ясно, что Солнце – только одна из звезд в бесконечной звездной Вселенной. Дальнейшее развитие астрономии шло по пути накопления новых фактов и поиска вариантов их объяснения.
Задачей современной астрономии является не только объяснение данных астрономических наблюдений, но и изучение эволюции Вселенной (от лат. evolution – развертывание, развитие). Эти вопросы рассматривает космология – наиболее интенсивно развивающаяся область астрономии.
Возраст Вселенной, согласно современной космологической концепции ее происхождения и развития, исчисляется с начала расширения и оценивается в 13–15 млрд лет. Современная астрономия интенсивно развивается: открыты новые космические объекты, установлены ранее неизвестные факты. К числу сравнительно недавно открытых космических объектов относятся квазары, нейтронные звезды, черные дыры.
Квазары – мощные источники космического радиоизлучения, которые, как предполагают, являются самыми яркими и далекими из известных сейчас небесных объектов.
Нейтронные звезды – предполагаемые звезды, состоящие из нейтронов, образующиеся, вероятно, в результате вспышек сверхновых звезд.
Черные дыры (или «застывшие звезды», «гравитационные могилы») – объекты, в которые, как предполагают, превращаются звезды на заключительной стадии своего существования. Пространство черной дыры как бы вырвано из пространства метагалактики: вещество и излучение «проваливаются» в нее и не могут «выйти» обратно.
Вновь установленные факты изучаются с позиций эволюционного подхода к решению вопросов о происхождении и развитии Вселенной, согласно которому Вселенная выступает как результат дифференциации и усложнения форм организации материи.
Глава 1. Звезды
Звезды – самосветящиеся небесные тела, состоящие из раскаленных газов. Солнце – ближайшая к нам звезда. Расстояние от Земли до Солнца – 8,3 световой минуты. Состав звезд, а также их температуру исследуют посредством спектрального анализа. Спектральный анализ – астрофизический метод, изучающий химический состав светил с помощью исследования их спектров.
Изучение спектров звезд позволило сделать вывод о том, что они состоят из атомов тех же химических элементов, что и все тела на Земле. В составе звезд преобладают водород (около 50 % по массе) и гелий (около 40 %). Атомы остальных химических элементов встречаются почти в таком же соотношении, как и на Земле. Вещество звезд представляет собой раскаленный газ. С учетом того, что масса звезд гораздо больше массы планет, понятно, что подавляющее большинство вещества Вселенной находится в состоянии раскаленного газа. При этом очень малая его доля находится в твердом и жидком состоянии, а живое вещество, даже если у многих звезд имеются обитаемые планеты, составляет ничтожную часть.
Внутреннее строение звезд рассчитывается, исходя из следующего: элементарные частицы – электроны, протоны, фотоны и др. – одни и те же и в звездах, и на Земле. Поэтому при изучении внутреннего строения звезд применяют общие законы физики. Согласно современным представлениям, звезды светят вследствие того, что в их недрах происходят ядерные реакции: водород превращается в гелий, в результате чего и освобождается атомная энергия. Поскольку содержание атомов водорода в звездах велико, за счет таких преобразований большинство звезд может излучать энергию. Вследствие происходящих атомных превращений постепенно меняется их химический состав, что может служить указанием на направления звездной эволюции.
Впечатление о бесчисленности звезд, видимых невооруженным глазом, ошибочно. В безлунную ночь в ясную погоду на небе видно всего лишь 3000 звезд. Мерцание звезд усиливает впечатление об их бесчисленности – одни и те же звездочки кажутся то ярче, то слабее из-за того, что между ними и нами протекают струйки воздуха различной плотности. Изучение звезд было вызвано потребностями материальной жизни общества – необходимостью ориентирования при путешествиях, создания календаря, определения точного времени. Еще в глубокой древности звездное небо было разделено на созвездия.
Созвездия – участки, на которые разделяют звездное небо по фигурам, образуемым яркими звездами. Всего насчитывается 88 созвездий, ими пользуются для ориентировки на звездном небе. Принадлежность звезды к одному созвездию – это их видимая, или перспективная, близость. На самом деле звезды, причисляемые к одному созвездию, находятся на самых различных расстояниях от нас.
Наблюдаемые на небе звезды характеризуются различным блеском, интенсивность которого определяется звездной величиной.
Звездная величина – принятая в астрономии единица измерения видимого блеска звезд и других небесных тел. Чем слабее светится звезда, тем больше число, обозначающее ее звездную величину.
Самые яркие назвали звездами первой величины. Самые слабые из видимых невооруженным глазом относят к звездам шестой величины. Звезды первой величины ярче звезд шестой величины в 100 раз. В бинокль видны звезды восьмой-девятой величин, а в телескоп – еще более слабые. Звезд первой величины на всем небе около 20. Звезд второй величины, таких, как главные звезды созвездия Большой Медведицы, – около 70. Всего видимых звезд, то есть звезд шестой величины и ярче, около 6000. Учитывая, что над горизонтом видна только половина всего неба, одновременно наблюдать можно максимально около 3000 звезд.
Звездная величина не имеет прямого отношения к действительной интенсивности испускаемого звездой излучения. Истинная сила света звезды характеризуется светимостью. Светимость определяется как отношение силы света звезды к силе света Солнца.
Число звезд большой светимости среди звезд, видимых невооруженным глазом, непропорционально велико, так как такие звезды видны на больших расстояниях. На самом деле звезды большой светимости в окрестностях Солнца встречаются гораздо реже, а звезды с меньшей светимостью – чаще. Из 20 ближайших к нам звезд только 3 видны невооруженным глазом, а из 20 звезд, кажущихся нам яркими, только 3 входят в число ближайших.
Основной метод определения расстояний до звезд состоит в измерении их видимых смещений, вызываемых обращением Земли вокруг Солнца. По смещению, величина которого обратно пропорциональна расстоянию, вычисляют и само расстояние. Годичные смещения звезд составляют обычно доли микронов, реже – несколько микронов. Расстояние до звезд может определяться и другими способами: например, исходя из светимости звезды и ее блеска.
Наблюдаемые с Земли звезды различного цвета: голубоватые, белые, желтые, оранжевые и красные. Цвет звезд соответствует температуре их поверхности. Голубоватые звезды самые горячие – температура на их поверхности составляет десятки тысяч градусов. Температура белых звезд – порядка 103 К, желтых (как наше Солнце) – около 6000 К, а красных – 3000 К и ниже. По направлению к центру звезды температура повышается и в центре достигает миллионов и десятков миллионов градусов. В недрах звезд происходит превращение водорода в гелий, эти реакции поддерживают мощное тепловое и световое излучение звезд в течение огромных промежутков времени. Было установлено, что не только количество, но и качество излучения (цвет) определяется температурой. Раскаленное тело излучает свет всех цветов (всех длин волн), но в зависимости от температуры накала максимум излучения приходится на различные области спектра, вследствие чего суммарное излучение имеет, то красный, то белый, то голубоватый цвет. Изучение звездных температур производят на основе спектрального анализа или посредством измерения количества тепла, приходящего от него на Землю.
Информация о работе Структура мегамира: звезды, планетарные системы, галактики