Структура мегамира: звезды, планетарные системы, галактики

Автор работы: Пользователь скрыл имя, 28 Марта 2012 в 17:29, контрольная работа

Описание

Мегамир или космос (от греч. hosmos – мир) – термин, идущий из древнегреческой философии для обозначения мира как структурно организованного и упорядоченного целого. Космосом греки называли Мир упорядоченный, прекрасный в своей гармонии в отличие от Хаоса – первозданной сумятицы. Сейчас под космосом понимают все находящееся за пределами атмосферы Земли.

Содержание

Введение…………………………………………………………………………...3
Глава 1. Звезды………………………………………………………...………….9
Глава 2. Планетарные системы…………………………………………………13
Глава 3. Галактики.………………………………………………………………17
Список используемой литературы……………………………………………...20

Работа состоит из  1 файл

Контрольная работа по КСЕ.doc

— 106.50 Кб (Скачать документ)

Звездный мир чрезвычайно многообразен. Различают несколько видов звезд: это гиганты и карлики, одиночные, двойные и кратные, переменные и новые.

Звезды сильно различаются по плотности: чем больше звезда, тем меньше ее плотность. Так, у звезд-гигантов плотность газов, из которых они состоят, очень мала – в сотни тысяч раз меньше плотности воды, а средняя плотность белых карликов в 30 раз больше плотности воды. Средняя плотность Солнца в 1,4 раза больше плотности воды.

Двойные звезды – системы, состоящие из двух звезд, каждая из которых обращается вокруг их общего центра тяжести. Обычно более яркую звезду в паре называют главной, а другую – ее спутником.

Ярчайшая звезда неба Сириус – двойная. Спутник этой звезды – белый карлик – обращается вокруг главной звезды за 50 лет и отстоит от нее в 20 раз дальше, чем Земля от Солнца.

Среди двойных звезд различают так называемые спектрально-двойные звезды – тесные пары звезд, которые нельзя увидеть раздельно при помощи современных оптических средств. Двойственность их обнаруживается по периодическим смещениям линий в спектрах.

Системы, состоящие из трех, четырех или более звезд, называются кратными звездами. Кратные звезды встречаются значительно реже, чем двойные.

Ближайшая к нам звезда α-Центавра, видимая в Южном полушарии Земли, в действительности представляет собой систему, которая состоит из двух главных звезд, очень сходных с нашим Солнцем. Период их обращения почти 80 лет, а среднее взаимное расстояние в 23 раза больше расстояния от Земли до Солнца. У этих двух звезд есть спутник – красный карлик. Таким образом, α-Центавра – тройная звезда.

Переменные звезды – звезды, блеск которых со временем меняется. Параллельно с изменением блеска меняются их цвет и температура, а иногда и размеры. Причиной переменности может являться периодическое затмение одной звезды другой. Но гораздо чаще происходят действительные изменения размеров и температур звезд: они сжимаются и расширятся – пульсируют. Промежутки между моментами наибольшего сжатия или расширения у одних переменных звезд составляют годы, у других – только часы. В зависимости от характера изменения блеска и причин, его вызывающих, переменные звезды подразделяются на различные типы.

Затменные переменные звезды – очень тесные двойные звезды, плоскость орбиты которых проходит через луч зрения. При обращении вокруг общего центра тяжести обе звезды попеременно закрывают друг друга, так что общий блеск системы во время затмений ослабевает.

Другой разновидностью переменных звезд являются цефеиды. Их так называют по типичной представительнице этого класса звезде в созвездии Цефея. Все цефеиды являются звездами-гигантами и сверхгигантами. Изменение блеска у них происходит строго периодически. Открытие зависимости между периодом изменения блеска у цефеид и их светимостью дало возможность определять расстояние до очень далеких звездных систем, если в них имеются цефеиды. Цефеиды – пульсирующие звезды. Пульсирует, расширяясь и сжимаясь, все тело звезды. При сжатии ее происходит нагревание, а при расширении – охлаждение. Изменение размера и температуры поверхности звезды и вызывает колебания ее излучения.

Новые звезды – звезды, излучение которых внезапно увеличивается в тысячи раз, а затем медленно уменьшается. Это некоторые красные карлики.

Изменения, происходящие в звезде за время вспышки, столь велики, что за несколько суток небольшая звезда-карлик превращается в гиганта. Блеск ее увеличивается более чем в 10 тыс. раз. От нее отделяется газовая оболочка, которая, продолжая расширяться, рассеивается в пространстве. В наибольшем своем блеске раздувшаяся оболочка больше нашего Солнца по диаметру в сотни раз. Новая звезда в большом блеске остается недолго, обычно около суток, затем ее блеск начинает ослабевать и звезда вновь сжимается до прежних размеров.

Исследованиями установлено, что в нашей Галактике ежегодно происходит около 100 вспышек новых звезд, но мы замечаем лишь ближайшие из них. Вспышка не означает возникновения или уничтожения звезды. Через некоторый промежуток времени эта же звезда может вспыхнуть вновь. Вспышки являются следствием нарушения устойчивости звезды, вызванного внутренними причинами. Сущность этих причин пока не выяснена. Иногда в нашей и других галактиках наблюдаются вспышки сверхновых звезд. При таких вспышках звезды излучают свет в миллионы и в сотни миллионов раз интенсивнее, чем Солнце. Сверхновые звезды – явление крайне редкое. Последней сверхновой звездой, наблюдавшейся в нашей Галактике, была звезда, которую наблюдал Кеплер в 1604 г. Таким образом, даже в таких гигантских звездных системах, как наша, вспышка сверхновой звезды бывает один раз в несколько столетий.

Согласно расчетам, допускают, что в ряде случаев в результате вспышки сверхновой остаток звездной массы катастрофически сжимается и звезда превращается в быстро вращающуюся нейтронную. Нейтронные звезды – предполагаемые звезды, состоящие из нейтронов. Они чрезвычайно плотные и очень малы – имеют в поперечнике около 10 км. Различают невидимые космические объекты, которые посылают огромное невидимое пульсирующее радиоизлучение, – пульсары. Пульсары – точечные источники радиоизлучения, испускающие импульсы с очень коротким периодом. Возможно, пульсары представляют собой нейтронные звезды.

Предполагают, что многие звезды окружены планетами. Вследствие дальности расстояния пока еще не удается непосредственно увидеть планеты около других звезд даже в самые мощные телескопы. Для их обнаружения необходимы тонкие методы исследования, тщательные наблюдения в течение десятков лет и сложные расчеты.

Около некоторых ближайших звезд уже обнаружены невидимые спутники малой массы. Их вычислили по еле заметным движениям звезд под действием притяжения их невидимым спутником. Пока еще с достоверностью не установлено, являются ли эти спутники планетами или же крайне слабо светящимися маленькими звездами. Однако есть все основания предполагать, что наша планетная система не является исключительным явлением в мировом пространстве. На планетах, окружающих другие звезды, также вероятно существование жизни, и Земля не представляет в этом отношении исключения.

В результате астрономических исследований для множества звезд точно определены положение на небе, их звездная величина, а также другие характеристики. По имеющимся сведениям составлены звездные каталоги, в которые занесено около миллиона звезд. По установленным положениям звезд на небе составляются карты звездного неба. Известно, что звезд ярче 21-й звездной величины около 2 млрд. Одна из них – Солнце.

 

Глава 2. Планетарные системы

 

Планетная система — система звезды и различных незвёздообразных астрономических объектов: планет и их спутников, карликовых планет и их спутников, астероидов, метеороидов, комет и космической пыли, которые вращаются вокруг общего барицентра, то есть центра масс. Совместно одна или несколько звёзд и их планетные системы образуют звёздную систему. Наша собственная планетная система, в которую входит Земля, вместе с Солнцем образует Солнечную систему.

Планетные системы вокруг звёзд, например Солнца, обычно считаются сформировавшимися в ходе того же процесса, который привёл к образованию звёзд. Некоторые ранние теории использовали предположения о другой звезде, проходящей крайне близко к планетообразующей звезде и вытягивающей из него вещество, которое сливается и образует планеты. Но теперь известно, что вероятность такого сближения или столкновения слишком мала, чтобы считать эту модель жизнеспособной. Общепринятые современные теории доказывают, что планетные системы образуются из газо-пылевого облака, окружающего звезду. Под действием притягивающих сил (гравитационных и электромагнитных) происходит конденсация отдельных участков облака. Ввиду анизотропии газо-пылевого облака по плотности, составу и другим физическим свойствам, конденсация происходит в отдельных местах облака характеризующихся наибольшей плотностью.

По состоянию на середину июня 2010 года открыто около 393 планетных систем. Поскольку на таких расстояниях землеподобную планету весьма проблематично обнаружить современным оборудованием из-за её небольших размеров и массы, почти все обнаруженные экзопланеты — это в основном планеты-гиганты, которые ввиду больших размеров и масс могут являться только газовыми планетами. Однако в будущем, когда соответствующие технологии разовьются, учёные смогут обнаруживать не только такие планеты, но даже их луны и планетоиды. Недавно была обнаружена каменистая экзопланета у звезды Gliese 581. Этот безусловный успех, в свою очередь, свидетельствует о неуникальности нашей Солнечной звёздной системы и о многообразии миров в целом.

Согласно ряду космогонических теорий, в значительной части внесолнечных планетных систем экзопланеты также делятся на внутренние твердотельные планеты, подобные нашим планетам земной группы, и внешние планеты, подобные нашим планетам-гигантам. Рассчитаны также иные устойчивые комбинации больших и малых планет на разных расстояних от своей звезды, которые теоретически возможны в планетных системах.

Некоторые планетные системы очень отличаются от нашей: планетные у пульсаров были выявлены по слабым колебаниям периода пульсации электромагнитного излучения. Пульсары образуются при взрыве сверхновых, а обычная планетная система не смогла бы перенести такой взрыв — или планеты испарились бы, или внезапная потеря большей части массы центральной звезды позволила бы им покинуть область притяжения звезды. Одна теория гласит, что существующие спутники звезды почти целиком испарились при взрыве сверхновой, оставив планетоподобные тела. Или же планеты могут каким-то образом формироваться в аккреционном диске, окружающем пульсар.

 

Глава 3. Галактики

 

Вселенная образована огромным количеством галактик. Галактика (от греч. galaktikos – млечный) – звездная система, в свою очередь образованная звездами различных типов, звездными скоплениями. Помимо звезд состав галактик могут входить газовые, пылевые туманности и др. Разным галактикам соответствуют различные, но вполне определенные элементы. Состав галактик зависит от ее возраста и условий развития. Полагают, что среднее расстояние между галактиками 2 млн. световых лет, а типичная скорость движения галактик – около 1000 км/с. Согласно расчетам, для прохождения расстояния до ближайшей галактики-соседки требуется около 1 млрд. лет, и возможность столкновения любой галактики с себе подобной галактикой не исключена.

Галактик – миллиарды, и в каждой из них насчитываются миллиарды звезд. Предположения о множественности галактик высказывались еще в середине VIII в., но доказательства их существования появились только в первой четверти XX в. Галактики образуют метагалактику (Вселенную), размеры которой оцениваются в 15–20 млрд. световых лет, а возраст – в 13–15 млрд. лет. Некоторые галактики излучают радиоволны с потрясающей мощностью. Предполагают, что в них существует магнитное поле, тормозящее движение находящихся там элементарных частиц, а это вызывает радиоизлучение.

В 60-х гг. XX в. были открыты квазары – квазизвездные радиоисточники – самые мощные источники радиоизлучения во Вселенной со светимостью в сотни раз большей светимости галактик и размерами в десятки раз меньшими их. Природа квазаров пока неясна. Возможно, квазары представляют собой ядра новых галактик, а значит, процесс образования галактик продолжается и поныне.

Галактики имеют свой центр (ядро), они различаются по форме, в соответствии с которой их классифицируют как спиральные, эллиптические, шаровые, неправильные. Вследствие удаленности галактик свет от входящих в них миллиардов звезд сливается, создавая впечатление светящегося туманного вещества, поэтому галактики получили название туманностей.

Ближайшая к нам большая галактика – наблюдаемая в созвездии Андромеды туманность – Туманность Андромеды. Это спиральная галактика, находящаяся от нас расстояние около 2 млн. световых лет. Она была открыта в 1917 г. как первый внегалактический объект. В 1923 г. путем спектрального анализа в этом объекте были обнаружены звезды и таким образом доказана его принадлежность к другой галактике. Туманность Андромеды имеет спутники эллиптической или шаровидной формы – более мелкие галактики. Еще одна спиральная галактика находится в созвездии Треугольника. По размерам она меньше Туманности Андромеды и не имеет спутников.

Галактики образуют группы галактик. Таких групп во Вселенной множество, они могут быть малыми и большими. Так, огромное облако, наблюдаемое в созвездии Девы, состоит из сотен галактик. В состав одной из групп – Местного скопления – входят спиральные галактики вместе со своими спутниками: Туманность Андромеды, галактика в созвездии Треугольника и наша Галактика.

Наша Галактика – это звездная система, в которую входят все звезды, видимые в созвездиях, и все звезды Млечного Пути, а также газовые и пылевые туманности.

Пылевые туманности – облака в межзвездном пространстве, образованные очень мелкой космической пылью.

Космическая пыль препятствует прохождению света от звезд, поглощая его. В большей степени поглощается коротковолновая, сине-зеленая часть спектра, поэтому свет звезд становится более желтоватым и даже красноватым. Космическая пыль является существенной помехой для исследований, поскольку она искажает свет звезд, ослабляет их блеск, а более далекие из них делает совсем невидимыми. Полагают, что в малой доле космическая пыль образуется от столкновения и разрушения мелких твердых тел, но в своей основной массе она возникает, вероятно, вследствие сгущения межзвездного газа.

Межзвездный газ был обнаружен по линиям поглощения в спектрах звезд. В его состав входит преимущественно водород, в меньшей степени – гелий; содержание азота и других легких газов небольшое. Межзвездный газ в крайне низких концентрациях имеется в большей части межзвездного пространства, а в отдельных местах образует скопления – газовые туманности Считают, что газ в туманностях частично является остатком тех газов, из которых когда-то возникли звезды, а также возникают и теперь: он выбрасывается звездами. В местах скопления газа может содержаться значительное количество космической пыли – это газово-пылевые туманности. Газовые и газово-пылевые туманности благодаря их свечению изучают с помощью астрономических приборов. Свечение газов в крупных газовых туманностях можно наблюдать потому, что толщина их огромна, а общая масса составляет от нескольких десятков до сотен тысяч масс Солнца. Газовые туманности бывают разных размеров и различной, чаще неправильной, формы. Туманности правильной, округлой формы – небольшие. Их называют планетарными.

Информация о работе Структура мегамира: звезды, планетарные системы, галактики