Уровни организации природы

Автор работы: Пользователь скрыл имя, 26 Января 2012 в 19:00, курсовая работа

Описание

Цель работы: всестороннее изучение и анализ микромира и его объектов.

Содержание

1. Введение
2. Уровни организации природы
2.1. Уровни организация неживой природы
3. Объекты микромира
4. Концепции микромира и квантовая механика
5. Заключение
6. Список использованной литературы

Работа состоит из  1 файл

реферат.docx

— 53.19 Кб (Скачать документ)

Современная наука  допускает возможность возникновения  и сосуществования множества  миров, подобных нашей Метагалактике  и называемых внеметагалактаческими объектами. Их сложные взаимоотношения образуют многоярусную Большую Вселенную - материальный мир с бесконечным разнообразием форм и видов материи. Причем не во всех этих мирах возможно то многообразие видов материи, которое возникает в истории нашей Метагалактики. 

ОБЪЕКТЫ МИКРОМИРА 

Все многообразие известных человечеству объектов и  свойственных им явлений обычно разделяется  на три качественно различные  области — микро-, макро- и мегамиры. 
 

Уровни Условные  границы
  Размер, м Масса, кг
Микромир r<=10-8 m <= 1010
Макромир r ~ 10-8 - 107 m ~10-10 – 1020
Мегамир r >107 m > 1020
 

Понятие «Микромир» охватывает фундаментальные и элементарные частицы, ядра, атомы и молекулы.

Элементарные  частицы – это частицы, входящие в состав прежде «неделимого» атома. К ним относят также и те частицы, которые получают при помощи мощных ускорителей частиц. Есть элементарные частицы, которые возникают при прохождении через атмосферу космических лучей, они существуют миллионные доли секунды, затем распадаются, превращаются в другие элементарные частицы или испускают энергию в форме излучения. К наиболее известным элементарным частицам относятся электрон, фотон, пи-мезон, мюон, нейтрино. В строгом смысле слова элементарные частицы не должны содержать в себе какие-либо другие частицы. Однако далеко не все из наиболее известных элементарных частиц удовлетворяют этому требованию. Было обнаружено, что элементарные частицы могут взаимно превращаться, т.е. не являются «последними кирпичиками» мироздания. В настоящее время уже известны сотни элементарных частиц, хотя согласно теории их число не должно быть особенно большим. Новейшие исследования, в частности, подтверждают выдвинутую ранее гипотезу о существовании еще «более элементарных» частиц – кварков.

Первой элементарной частицей, открытой в физике, стал электрон, который в 1897 году, изучая газовые  разряды открыл английский физик Джозеф Томсон и измерил отношение его заряда к массе. Электрон — один из основных структурных элементов вещества; электронные оболочки атомов определяют оптические, электрические, магнитные и химические свойства атомов и молекул, а также большинство свойств твердых тел.

В обычном употреблении физики называют элементарными такие  частицы, которые не являются атомами  и атомными ядрами, за исключением  протона и нейтрона. После установления сложной структуры многих элементарных частиц потребовалось ввести новое  понятие – фундаментальные частицы, под которыми понимаются микрочастицы, внутреннюю структуру которой нельзя представить в виде объединения других свободной частиц.

Во всех взаимодействиях  элементарные частицы ведут себя как единое целое. Характеристиками элементарных частиц являются, кроме  массы покоя, электрического заряда, спина, также такие специфические  характеристики (квантовые числа), как  барионный заряд, лептонный заряд, гиперзаряд, странность и т.п.

В настоящее  время достаточно много известно об атомарном строении вещества и  элементарных частицах. Поскольку элементарные частицы способны к взаимным превращениям, это не позволяет рассматривать  их, так же как и атом, в качестве простейших, неизменных «кирпичиков  мироздания». Число элементарных частиц очень велико. Всего открыто более 350 элементарных частиц, из которых  стабильны лишь фотон, электронное  и мюонное нейтрино, электрон, протон и их античастицы (каждая элементарная частица, за исключением абсолютно нейтральных, имеет свою античастицу). Остальные элементарные частицы самопроизвольно распадаются за время от 103 с (свободный нейтрон) до 10-22- 10-24 с (резонансы).

Существует несколько  групп элементарных частиц, различающихся  по своим свойствам и характеру  взаимодействия, которые принято  делить на две большие группы: фермионы и бозоны (см. рисунок).

Фермионы составляют вещество, бозоны переносят взаимодействие.

Лептоны (от греч. легкий) - частицы со спином 1/2, не участвующие в сильном взаимодействии и обладающие сохраняющейся внутренней характеристикой - лептонным зарядом, могут быть нейтральными. Заряженные лептоны могут, как и электроны (относящиеся к их числу) вращаться вокруг ядер, образуя атомы. Лептоны, не имеющие заряда могут проходить беспрепятственно через вещество (хоть через всю Землю) не взаимодействуя с ним. У каждой частицы есть античастица, отличающаяся только зарядом.

 

Адроны - элементарные частицы, участвующие во всех фундаментальных взаимодействиях, включая сильное; характерным для адронов сильным взаимодействиям свойственно максимальное число сохраняющихся величин (законов сохранения). Адроны делятся на барионы и мезоны. По современным представлениям, адроны имеют сложную внутреннюю структуру: барионы состоят из трех кварков; мезоны - из кварка и антикварка.

Отдельную «группу» составляет фотон.

При столкновениях  элементарных частиц происходят всевозможные превращения их друг в друга (включая  рождение многих дополнительных частиц), не запрещаемые законами сохранения.

Атомом (от греч. atomos - неделимый) называют часть вещества микроскопических размеров и массы, мельчайшую частицу химического элемента, сохраняющую его свойства. Атомы состоят из элементарных частиц и имеют сложную внутреннюю структуру, представляя собой целостную ядерно-электронную систему. В центре атома находится положительно заряженное ядро, в котором сосредоточена почти вся масса атома; вокруг движутся электроны, образующие электронные оболочки, размеры которых (~10-8 см) определяют размеры атома. Ядро атома состоит из протонов и нейтронов. Число электронов в атоме равно числу протонов в ядре (заряд всех электронов атома равен заряду ядра), число протонов равно порядковому номеру элемента в периодической системе. Атомы могут присоединять или отдавать электроны, становясь отрицательно или положительно заряженными ионами. Химические свойства атомов определяются в основном числом электронов во внешней оболочке; соединяясь химически, атомы образуют молекулы.

Важная характеристика атома — его внутренняя энергия, которая может принимать лишь определенные (дискретные) значения, соответствующие  устойчивым состояниям атома, и изменяется только скачкообразно путем квантового перехода. Поглощая определенную порцию энергии, атом переходит в возбужденное состояние (на более высокий уровень  энергии). Из возбужденного состояния  атом, испуская фотон, может перейти в состояние с меньшей энергией (на более низкий уровень энергии). Уровень, соответствующий минимальной энергии атома, называется основным, остальные — возбужденными. Квантовые переходы обусловливают атомные спектры поглощения и испускания, индивидуальные для атомов всех химических элементов.

Под ядром атома понимается его центральная часть, в которой сосредоточена практически вся масса атома и весь его положительный заряд. Ядро состоит из нуклонов – протонов и нейтронов (обозначение p и n). Масса протона mP = 1,673Ч10-27 =1,836me , mn = 1,675Ч10-27 = 1835,5me. Масса ядра не равна сумме масс протонов и нейтронов, входящих в него (т.н. «дефект масс»). Протон несет элементарный положительный заряд, нейтрон – частица незаряженная. Число электронов в атоме равно порядковому номеру Z элемента в таблице Менделеева, а число протонов, поскольку в целом атом нейтрален, равно числу электронов. Тогда число нейтронов в ядре определяется следующим образом: NP = A – Z, где А – массовое число, т.е. целое число, ближайшее к атомной массе элемента в таблице Менделеева, Z – зарядовое число (число протонов). Для обозначения ядер применяется запись ZXA, где Х – символ химического элемента в таблице Менделеева. Ядра с одинаковыми Z, но разными А называются изотопами. Сейчас известно более 300 устойчивых и более 1000 неустойчивых изотопов. С неустойчивыми изотопами связано явление радиоактивности – ядерного распада.

Ядро в целом  – устойчивая система, для его  разрушения необходимо затратить энергию. Эта энергия называется энергией связи ядра. Энергия связи, приходящаяся на один нуклон, называется удельной энергией связи. Нуклоны в ядре удерживаются ядерными силами, представляющими сильное взаимодействие и имеют обменный характер. Ядерные силы обладают рядом свойств:

1. Ядерные силы  являются короткодействующими (радиус  действия порядка 10-15 м) На этих  расстояниях они значительно  превышают кулоновские силы отталкивания  протонов. При значительном уменьшении  расстояния притяжение нуклонов  сменяется отталкиванием.

2. Ядерные силы  обладают зарядовой независимостью, т.е. действуют как между заряженными,  так и между нейтральными частицами.

3. Ядерные силы  обладают свойствами насыщения.  Это означает, что каждый нуклон  в ядре взаимодействует лишь  с ограниченным числом ближайших  к нему нуклонов.

4. Ядерные силы  не являются центральными. Их  величина зависит от ориентации  спинов частиц.

Молекулы — это очередной после атомов качественный уровень строения и эволюции вещества. Молекула – микрочастица, образованная из атомов и способная к самостоятельному существованию, обладающая его главными химическими свойствами. Имеет постоянный состав входящих в нее атомных ядер и фиксированное число электронов и обладает совокупностью свойств, позволяющих отличать молекулы одного вида от молекул другого. Число атомов в молекуле может быть различным: от двух до сотен тысяч.

Молекулы простых  веществ состоят из одинаковых атомов, сложных – из разных атомов. Существует большое количество соединений, молекулы которых состоят из многих тысяч  атомов - макромолекулы.

Подчеркивая целостность  молекул, органическое единство их составных  частей, современное естествознание характеризует движение молекул  как движение самостоятельных и  целостных систем, а не как простую  сумму разрозненных движений отдельных  образующих их частиц (атомов, ядер и  электронов). Те взаимодействия молекул, которые не сопровождаются изменением их структуры, изучаются физикой  и называются физическими. Взаимодействия же молекул, приводящие к их качественным взаимопревращениям, перестройке их внутренних связей, называются химическими и изучаются химией. 
 

КОНЦЕПЦИИ МИКРОМИРА И КВАНТОВОЙ  МЕХАНИКИ 

Для описания явлений  микромира обычно привлекают квантовую  механику (иногда ее еще называют волновой механикой). Квантовой механикой  называют теорию, устанавливающую способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем (например, кристаллов), а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно  измеряемыми на опыте. Законы квантовой  механики составляют фундамент изучения строения вещества. Они позволили  выяснить строение атомов, установить природу химической связи, объяснить  периодическую систему элементов, понять строение атомных ядер, изучать  свойства элементарных частиц.

Разработка квантовой  механики относится к началу XX века, когда были обнаружены две, казалось бы, не связанные между собой группы явлений (установление на опыте двойственной природы света - дуализма света и  невозможность объяснить на основе имевшихся представлений существование  устойчивых атомов и их оптические спектры), свидетельствующих о неприменимости механики Ньютона и классической электродинамики к процессам  взаимодействия света с веществом  и к процессам, происходящим в атоме. Установление связи между этими группами явлений и попытки объяснить их на основе новой теории и привели к открытию законов квантовой механики.

Впервые представления  о кванте ввел в 1900 году М.Планк в  работе, посвященной теории теплового  излучения тел. Существовавшая в  то время теория теплового излучения, построенная на основе классической электродинамики и статистической физики, приводила к бессмысленному результату,. Планк разрешил противоречие о том, что тепловое равновесие между  излучением и веществом не может  быть достигнуто, так как вся энергия  должна перейти в излучение, предположив, что свет испускается не непрерывно, как следует из классической теории излучения, а дискретными порциями энергии - квантами, причем величина кванта энергии зависит от частоты света.

Эта работа Планка стимулировала развитие квантовой  механики в двух взаимосвязанных  направлениях: первое направление - теория фотоэффекта Эйнштейна, который  предположил, что свет квантами не только испускается и поглощается, но и  распространяется, т.е. дискретность присуща  самому свету: свет состоит из отдельных  порций — световых квантов (фотонов).

В 1922 году А.Комптон  экспериментально показал, что рассеяние  света свободными электронами происходит по законам упругого столкновения двух частиц - фотона и электрона. Таким  образом, было доказано, что наряду с известными волновыми свойствами (проявляющимися, например, в дифракции  света — огибании светом различных препятствий) свет обладает и корпускулярными свойствами: он состоит как бы из частиц — фотонов. Возникло формальное логическое противоречие: для объяснения одних явлений необходимо считать, что свет имеет волновую природу, а объяснение других предполагало его корпускулярную природу.

Информация о работе Уровни организации природы