Автор работы: Пользователь скрыл имя, 05 Сентября 2011 в 20:43, курсовая работа
Экономическая категория коммерческого риска, присущая свободным рыночным отношениям, приобрела черты объективности и в наших условиях. Она проявляется на всех стадиях воспроизводственного процесса (в промышленной, оптовой и розничной торговле, как и во всех других областях хозяйственно-финансовой деятельности, связанной с получением прибыли). Отсюда и необходимость, и актуальность проблемы анализа данной категории.
Риск в статике — это риск потерь реальных активов вследствие нанесения ущерба собственности, а также потерь дохода из-за недееспособности организации.
Поскольку
любые действия возможны только во
времени, то и риск в статике переходит
в риск в динамике. Поэтому можно
говорить о риске только в определенный
момент времени — время изменится,
изменится и величина риска.
3.
АНАЛИЗ КОММЕРЧЕСКОГО
РИСКА
Анализ риска может включать множество подходов, связанных с проблемами, вызванными неуверенностью, включая определение, оценку, контроль и управление риском.
Иными словами, анализ риска должен быть связан с пониманием того, что может случиться и что должно случиться.
С этой целью английские экономисты Д.Ф.Купер и К. Б. Чепмэн предлагают использовать программирование риска, предполагающее комплексный подход ко всем аспектам анализа риска. Его цель выявить и измерить неопределенность, а также развивать способность проникновения в суть неизбежных изменений, связанных с риском через эффективные и действенные решения. Программирование риска основывается на наиболее широком и гибком применении анализа риска в стремлении к наилучшему управлению риском.
В своей основе теория анализа риска позволяет создать гибкую общую сеть вербальных, графических и математических моделей, формируемых на базе взаимодействия с компьютерной документацией; применять совокупность взаимосвязанных методов, предназначенных для соответствующих моделей, объединяющих модели и обстоятельства, в которых они использованы, обширный ряд относящихся к делу экспертиз и экспериментов.
Таким образом, анализ риска помогает своевременно выбирать оптимальный альтернативный вариант во всех сферах экономики. Именно эта теория может стать наиболее эффективным средством прогнозирования развития микроэкономических объектов, являющихся основой рыночной экономики.
Разделив
систему на отдельные элементы подсистемы,
можно анализировать
Эта
форма анализа может
Если программа или инвестиция связаны с неопределенностью, которая может приводить к широкому разнообразию вероятных норм прибыли, анализ риска также может оказаться уместным. Причем его методика может быть полезна как для стратегических, так и для тактических решений.
Используя
экономический анализ, определяя
вероятность ожидаемого результата
и оценивая риск посредством экономико-
Таким образом, с возможностью оптимального выбора определенной позиции, производственных, финансовых, коммерческих операций и составляющих их элементов экономика получает возможность саморегулирования, достижения сбалансированности, стабильности функционирования и затем исключения кризисов.
В рыночной экономике, предполагающей наличие у предпринимателей права самостоятельно выбирать, какую производить продукцию, устанавливать цены на нее, а в торговле наценки на основе себестоимости процесса производства (реализации) и сложившейся рыночной конъюнктуры, возникает потребность в оптимальном формировании структуры товаров с целью получить максимальную прибыль. Для этого можно использовать систему увязки перспектив сбыта продукции с возможностями ресурсообеспечения и прибыльностью по товарным группам, основанную на построении «баланса выживания». Его наиболее целесообразно применять в коммерческой деятельности, если при оценке (ранжировке) товаров по их прибыльности для его составления использовать анализ рентабельности по товарным группам. А при оценке (ранжировке) продукции по перспективам реализации обратиться к методу экстраполяции по среднему темпу роста, которым можно также дополнить расчет прибыльности, если требуется более точный результат при оценке (ранжировке) товаров по их прибыльности на будущий период.
При выборе рациональной стратегии производства (оптовых закупок в торговле) в условиях неопределенности можно использовать игровые модели.
Вариант
применения игровых моделей покажем
на примере фирмы, имеющей несколько
каналов сбыта продукции
Неопределенность в вероятных колебаниях спроса на продукцию данной фирмы вызвана тем, что: объем продукции в стоимостном выражении с устойчивым сбытом на ряд лет составляет 300 (низкая зависимость от резких изменений рыночной конъюнктуры); объем продукции с устойчивым сбытом, но не на длительный срок (средняя зависимость от изменений конъюнктуры рынка) составляет 3000; продукция обеспечена только разовыми поставками — 3000 (высокая зависимость от изменений конъюнктуры); объем продукции, покупатель на которую не определен, — 3000 (абсолютная зависимость от изменений конъюнктуры). Итого — 12000 денежных единиц.
В
розничной торговле с помощью
этого примера можно определять
объем оптовых закупок у
В задаче имеются три стратегии производства продукции (оптовых закупок товаров в торговле):
S1 = 6 000 денежных единиц;
S2 = 9000 „ „ ,, ;
S3 = 12000 „ ,, „ ;
В зависимости от изменения конъюнктуры рынка в связи с имеющимися возможностями сбыта рассчитаны варианты среднегодовой прибыли, которые представлены в виде матрицы платежеспособности с учетом ожидаемого значения потерь, связанных с хранением нереализованной продукции, как следствия неиспользованных возможностей, нерационального распределения инвестиций и снижения оборачиваемости оборотных средств (табл. 2).
Объем производства | Размер прибыли в зависимости от вероятных колебаний спроса, д.е. | αi=min gij | W |
βi=max gij | |||
3000 | 6000 | 9000 | 12000 | ||||
S1=6000 | 1020 | 4200 | 4200 | 4200 | 1020 | 1020 | 4020 |
S2=9000 | -60 | 3120 | 6300 | 6360 | -60 | 6300 | |
S3=12000 | -1140 | 2040 | 5220 | 8400 | -1140 | 8400 | |
Βi=max sij | 1020 | 4200 | 6300 | 8400 |
Примечание: i—№ строки; j—№ графы.
Требуется выбрать оптимальную стратегию производства и сбыта. Для этого используем игровые модели на основе минимаксных стратегий.
Анализ этой игры начнем с позиций максимина, который заключается в том, что субъект, принимающий решение, избирает чистую стратегию, гарантирующую ему наибольший (максимальный) из всех наихудших (минимальных) возможных исходов действия по каждой стратегии.
Если
выбрать стратегию S1 то наихудший
из всех возможных исходов состоит в том,
что чистый доход составит:
α1=min gij=min(1020, 4200, 4200, 4200) = 1020 д.е.
j
Аналогично
находим для остальных стратегий наихудшие
исходы и записываем их в табл. 2. Они покажут
уровень безопасности каждой стратегии,
поскольку получение более худшего варианта
исключено. На этой основе наилучшим решением
Sопт будет такое, которое гарантирует
лучший из множества наихудших исходов.
Оно определяется с помощью выражения:
W = max αi = mах min gij = mах(1020, —60, —1140) = 1020 д.е.→ S1
i
i j
Стратегия S1 называется максиминной, т.е. при любом из условий конъюнктуры рынка результат будет не хуже, чем W = 1020 д.е. Поэтому такую величину называют нижней ценой игры, или максимином, а также принципом наибольшего гарантированного результата на основе критерия Вальда, в соответствии с которым оптимальной стратегией при любом состоянии среды, позволяющем получить максимальный выигрыш в наихудших условиях, является максиминная стратегия.
Максиминная оценка по критерию Вальда является единственной абсолютно надежной при принятии решения в условиях неопределенности.
Теперь проведем аналогичные рассуждения для второй стороны состояния среды, в данном случае соотношений спроса и стратегии производства для выявления гарантированного наихудшего (минимального) исхода (размера прибыли) из всех наилучших (максимальных) исходов действия по каждой стратегии.
Для
этого по каждому варианту вероятного
объема сбыта по каждой стратегии
выберем решение, максимизирующее
выигрыш с помощью выражения
β1=max gij
j
Для
первой строки табл. 11.7 это решение
составит:
β1=max
(1020, 4200, 4200, 4200) = 4200.
Для
последующих строк выбираем значения
аналогично. С учетом всего возможного
худший вариант будет определяться
выражением:
β=min βi= min max gij = min(4200, 6300, 8400) = 4200 д.е.
j
Эта величина называется верхней ценой игры, или минимаксом, а соответствующие условия состояния среды или стратегия противника-игрока (возможного конкурента) — минимаксной. При наихудшем исходе из всех наилучших исходов действия по каждой стратегии противник = игрок гарантирует, что проиграет, или «природа» (состояние спроса и предложения) даст возможность выиграть не больше, чем β = 4200.
Минимаксную и максиминную стратегии часто называют одним термином — минимаксные стратегии.
Чтобы
оценить, насколько то или иное состояние
«природы» влияет на исход, используем
показатель риска rij при вводе стратегии
Si и при состоянии природы Пj,
определяемый как разность между максимально
возможным выигрышем при данном состоянии
Пj и выигрышем при выбранной стратегии:
rij
= β - gij; при rij>=0. (1)
На этой основе строим матрицу рисков (табл. 3), подсчитав для нее значения подстановкой данных табл. 2 в формулу риска (1).
3000 | 6000 | 9000 | 12000 | Max ri | Sопт | |
S1 | 0 | 0 | 2100 | 4200 | 4200 | |
S2 | 1080 | 1080 | 0 | 2100 | 2100 | 2100 |
S3 | 2160 | 2160 | 1080 | 0 | 2160 |
Информация о работе Анализ и оценка коммерческого риска торгового предприятия