Автор работы: Пользователь скрыл имя, 27 Января 2013 в 18:59, реферат
В условиях хорошо развитого рынка новая информация находит быстрое отражение в курсовой стоимости активов. Поэтому для таких условий можно разработать модель, которая бы удовлетворительно описывала взаимосвязь между риском и ожидаемой доходностью активов. Такая модель разработана в середине 60-х гг. У. Шарпом и Дж. Линтерном и получила название модели оценки стоимости активов (capital asset pricing model - САРМ ).
ВВЕДЕНИЕ 3
1 Модель оценки стоимости активов (CAPM) 4
1.1 Линия рынка капитала 4
1.2 Рыночный и нерыночный риски. Эффект диверсификации 8
1.3 Бета 10
1.4 Линия рынка актива SML 13
1.5 Вопросы, возникающие при построении SML 15
1.6 CML и SML 16
1.7 Альфа 18
2 Модификации CAPM 22
2.1 САРМ для случая, когда ставки по займам и депозитам не равны 22
2.2 САРМ с нулевой бетой 23
2.3 Версия САРМ для облигаций 23
ЗАКЛЮЧЕНИЕ 25
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 27
(*),
или
,
где: βi - бета i-го актива (портфеля);
Covi, m - ковариация доходности i-го актива (портфеля) с доходностью рыночного портфеля;
Соrri, m - корреляция доходности i-го актива (портфеля) с доходностью рыночного портфеля.
Поскольку величина бета определяется
по отношению к рыночному
,
где: βm - бета рыночного портфеля.
Бета актива (портфеля) без риска равна нулю, потому что нулю равна ковариация доходности актива (портфеля) без риска с доходностью рыночного портфеля. Величина σ актива (портфеля) говорит о том, насколько его риск больше или меньше риска рыночного портфеля. Активы с бетой больше единицы более рискованны, а с бетой меньше единицы - менее рискованны чем рыночной портфель. Относительно величины бета активы делят на агрессивные и защитные.
Бета агрессивных активов больше единицы, а защитных - меньше единицы. Если бета актива равна единице, то его риск равен риску рыночного портфеля. Бета может быть как положительной, так и отрицательной величиной. Положительное значение беты говорит о том, что доходности актива (портфеля) и рынка при изменении конъюнктуры меняются в одном направлении. Отрицательная бета показывает, что доходности актива (портфеля) и рынка меняются в противоположных направлениях.
Подавляющая часть активов имеет положительную бету. Бета актива (портфеля) показывает, в какой степени доходность актива (и соответственно его цена) будет реагировать на действие рыночных сил. Зная бету конкретного актива (портфеля), можно оценить, насколько должна измениться его ожидаемая доходность при изменении ожидаемой доходности рынка. Например, бета бумаги равна +2. Это значит, что при увеличении ожидаемой доходности рыночного портфеля на 1% доходность бумаги возрастет на 2%, и наоборот, при уменьшении доходности рыночного портфеля на 1% доходность бумаги снизится на 2%. Поскольку бета бумаги больше единицы, то она рискованнее рыночного портфеля.
Активы с отрицательной бетой являются ценными инструментами для диверсификации портфеля, поскольку в этом случае можно построить портфель с "нулевой бетой", который не будет нести риска. Здесь, однако, следует помнить, что такой портфель не аналогичен активу без риска, так как при нулевом значении беты он не содержит только системного риска. В то же время данный портфель сохранит риск нерыночный.
Зная величину беты для каждого из активов, вкладчик может легко сформировать портфель требуемого уровня риска и доходности.
Бета портфеля - это средневзвешенное значение величин бета активов, входящих в портфель, где весами выступают их удельные веса в портфеле. Она рассчитывается по формуле:
,
где: ßP - бета портфеля;
ßi - бета i-го актива;
Qi - уд. вес i-го актива.
Пример.
Инвестор формирует портфель из трех активов:
А, В и С. QA = 0,8; QB = 0,95; QC = 1,3; βA = 0,5; βB = 0,2; βC = 0,3.
Бета портфеля равна:
0,5*0,8 + 0,2*0,95 + 0,3*1,3 = 0,98.
Бета каждого актива рассчитывается на основе доходности актива и рынка за предыдущие периоды времени. Информацию о значениях беты можно получить от аналитических компаний, которые занимаются анализом финансового рынка, а также из периодической печати.
CML показывает соотношение
риска и доходности для
Она представляет собой прямую линию, проходящую через две точки, координаты которых равны (0; rf) и (1; E(rm)). Таким образом, зная ставку без риска и ожидаемую доходность рыночного портфеля, можно построить SML. В состоянии равновесия рынка ожидаемая доходность каждого актива и портфеля, независимо от того, эффективный он или нет, должна располагаться на SML.
Рисунок 3 – Линия рынка актива
Следует еще раз подчеркнуть, что если на CML находятся только эффективные портфели, то на SML располагаются как широко диверсифицированные, так и неэффективные портфели и отдельные активы. Ожидаемую доходность актива (портфеля) определяют с помощью уравнения SML.
(**).
Пример. rf = 15%, E(rm) = 25%, βi = 1,5. Определить E(ri).
.
Наклон SML определяется отношением инвесторов к риску в различных условиях рыночной конъюнктуры. Если у вкладчиков оптимистичные прогнозы на будущее, то наклон SML будет менее крутой, так как в условиях хорошей конъюнктуры инвесторы согласны на более высокие риски (поскольку они менее вероятны на их взгляд) при меньших значениях ожидаемой доходности (рисунок 4 SML1).
Напротив, в преддверии неблагоприятной
конъюнктуры SML примет более крутой
наклон, так как в этом случае
инвесторы в качестве компенсации
потребуют более высокую
Рисунок 4 – Наклон SML в зависимости от ожиданий будущей конъюнктуры
Рисунок 5 – Наклон SML при изменении ставки без риска
На практике возникает ряд проблем, затрудняющих четкий ответ на вопрос, по каким данным следует строить SML. Как уже отмечалось, САРМ является моделью одного временного периода. Поэтому в теории ставка без риска принимается равной ставке по краткосрочным ценным бумагам. Однако вкладчики строят инвестиционные стратегии, ориентируясь и на долгосрочную перспективу.
Если в качестве ставки без риска принять ставку по долгосрочным ценным бумагам, то, как правило, SML примет более пологий наклон (рисунок 6 SML2), чем в случае краткосрочных бумаг (рисунок 6 SML1).
Рисунок 6 – Наклон SML в зависимости от ставки без риска по краткосрочным и долгосрочным бумагам
На практике отмеченная проблема возникнет в том случае, когда ставки без риска по долгосрочным и краткосрочным облигациям отличаются в существенной степени и для активов (портфелей) с высокой или низкой бетой, поскольку для активов (портфелей) с бетой близкой к единице разница в доходности для двух случаев не будут большой. Возникает вопрос и относительно точности прогнозирования ожидаемой доходности рынка.
Чтобы лучше понять CML и SML, сравним их характеристики. В состоянии рыночного равновесия на CML располагаются только эффективные портфели. Другие портфели и отдельные активы находятся под СML. CML учитывает весь риск актива (портфеля), единицей риска выступает стандартное отклонение. В состоянии равновесия на SML расположены все портфели, как эффективные, так и неэффективные и отдельные активы. SML учитывает только системный риск портфеля (актива). Единицей риска является величина бета.
В состоянии равновесия неэффективные портфели и отдельные активы располагаются ниже СML, но лежат на SML, так как рынок оценивает только системный риск данных портфелей (активов)
Рисунок 7 – a - CML, b- SML
На рисунке 7a представлен эффективный портфель В, который располагается на CML. Риск портфеля равен σB, а ожидаемая доходность - rB.
На этом же рисунке представлена бумага А. Она имеет такую же ожидаемую доходность, что и портфель В, однако ее риск (σA) больше риска портфеля В. Так как бумага А - это отдельный актив, то она лежит ниже линии CML. Бета портфеля В и бета бумаги А равны, поэтому и портфель В и бумага А располагаются на SML в одной точке (рисунок 7b). Так получается потому, что рынок оценивает портфели (активы) не с точки зрения их общего риска, который измеряется стандартным отклонением, а только на основе рыночного риска, измеряемого бетой. В результате актив А оценивается рынком точно также как и портфель В, хотя общий риск актива А больше, чем риск портфеля В. CML и SML можно сравнить еще следующим образом. Подставим из формулы (*) значение σ в формулу SML (**). В результате получим уравнение SML несколько в ином виде:
.
Формулу для CML также можно записать аналогичным образом:
.
Однако в случае СML коэффициент корреляции равен +1, что говорит о полной корреляции эффективных портфелей с рынком. Неэффективные портфели и отдельные активы не имеют полной корреляции с рынком, что и нашло отражение в уравнении SML.
САРМ ничего не говорит
о взаимосвязи ожидаемой
Согласно САРМ цена актива
будет изменяться до тех пор, пока
он не окажется на SML. На практике можно
обнаружить активы, которые неверно
оценены рынком относительно уровня
его равновесной ожидаемой
Если эта оценка не соответствует
реальному инвестиционному
Поэтому если учитывать протяженный период времени, то будет пересматриваться и сам уровень равновесной ожидаемой доходности. Однако в САРМ мы рассматриваем только один временной период, поэтому и можем говорить о равновесной доходности, которая в конечном итоге должна возникнуть на рынке для данного актива. Возможные отклонения от равновесного уровня могут наблюдаться в силу каких-либо частных причин в течение коротких промежутков времени.
Однако в следующие
моменты должно возникнуть движение
доходности актива к точке равновесного
уровня. Если актив переоценен рынком,
уровень его доходности ниже чем
активов с аналогичной
Альфа представляет собой разность между действительной ожидаемой доходностью актива и равновесной ожидаемой доходностью, т. е. доходностью, которую требует рынок для данного уровня риска. Альфа определяется по формуле:
,
где: αi - альфа i-го актива;
ri - действительная ожидаемая доходность i-го актива;
E(ri) - равновесная ожидаемая доходность.
Доходность актива в этом случае можно записать как
.
Откуда:
.
На рисунке 8 представлены два актива, которые неверно оценены рынком по отношению к уровню их риска. Актив А недооценен, В - переоценен.
Согласно SML доходность А в условиях равновесия должна составлять 12,5%, фактическая оценка - 13%, т. е. актив предлагает 0,5% дополнительной доходности, поэтому его альфа равна +0,5. Противоположная ситуация представлена для актива В. Его равновесная ожидаемая доходность согласно SML составляет 17,5%, фактически он предлагает 13%, т. е. его альфа равна -4,5. Таким образом, актив недооценен рынком, если его альфа положительна, и переоценен, если отрицательна.
Для равновесной ожидаемой доходности альфа равна нулю. Инвесторы, желающие получить более высокие доходы, должны стремиться приобретать активы с положительной альфой. Через некоторое время рынок заметит недооценку, и их цена повысится. Одновременно инвесторам следует продавать активы с отрицательной альфой, так как в последующем их цена понизиться.
Рисунок 8 – Альфа активов
Доходность портфеля - это средневзвешенная величина доходностей входящих в него активов, поэтому альфа портфеля также является средневзвешенной величиной и определяется по формуле:
.
где: αP - альфа портфеля;
Qi - уд. вес i-го актива в портфеле;
αi - альфа i-го актива.
Пример.
Портфель состоит из трех бумаг - А, В и С QA = 2; QB = 1,5; QC = -1;
αA = 0,5; αB = 0,2 и αC = 0,3. Альфа такого портфеля равна:
0,5*2 + 0,2*1,5 + 0,3*(-1) = 1.