Автор работы: Пользователь скрыл имя, 18 Сентября 2011 в 22:22, курсовая работа
Цель работы – раскрытие понятия, разновидности, структуры, этапов организации и проведения социального эксперимента.
Введение…………………………………………………………………...3
1. Социальный эксперимент: понятие, разновидности, структура, этапы организации и проведения…………………………………………………5
2. Эксперимент и виды эксперимента. Основные принципы экспериментирования в социальных науках……………………………..5
3. Основные экспериментальные планы с контрольной группой и рандонизацией…………………………………………………………….12
4. Многомерные и факторные эксперименты: общий обзор……………..25
Заключение………………………………………………………………32
Список использованной литературы………………………………...33
При проведении рандомизации мальчиков случайным образом распределяли между отрядами, где проводился эксперимент, и отрядами, служившими контрольными (каждый отряд жил в отдельно расположенном корпусе). В экспериментальных отрядах было увеличено количество воспитателей, проводились специальные индивидуальные и групповые консультации, использовалась система вознаграждений за хорошее поведение. В контрольных группах применялись обычные методы воспитания и обучения, а также традиционные наказания за нарушение внутреннего распорядка. Результаты эксперимента показали, что мальчики из экспериментальных групп раньше покидали спецшколу, лучше успевали в учебе, вели себя адаптивнее. Не было обнаружено значимых различий в показателях рецидивной преступности для подростков из экспериментальных и контрольных групп, освобожденных из школы-колонии, однако ребята из экспериментальных групп значительно отличались от ребят из контрольных групп по показателю тяжести вновь совершенных преступлений (первые, в случае рецидива, совершали менее тяжкие преступления). По результатам эксперимента было принято решение о внедрении экспериментальной коррекционной программы во всех подразделениях школы.
Еще один популярный план с рандомизацией и контрольной группой – это план Соломона. План Соломона – это расширенный вариант плана RT1-2C, позволяющий проконтролировать и оценить эффекты естественного развития и фона, а также определить взаимодействие эффекта тестирования с основным воздействием X. Здесь наряду с экспериментальной и контрольной группами с предварительным тестированием используются экспериментальная и контрольная группы без предварительного тестирования (как в плане RTC). Схематически это выглядит следующим образом:
Очевидно, что если главный эффект Х реален, то даже при наличии существенного эффекта тестирования («хоуторнского эффекта») будут выполняться четыре неравенства: О2>О1, О2>О4, О5>О6; О5>О3. Оценкой сравнительной величины эффекта предварительного тестирования (без взаимодействия с Х) может служить величина разности О6 - О3. Сравнение O6, с О1 и О3 позволяет оценить влияние фоновых факторов и факторов естественного развития.
До сих пор мы обсуждали содержательные аспекты проверки экспериментальной гипотезы о наличии главного эффекта X с помощью различных планов эксперимента, а также преимущества разных планов для обеспечения разных аспектов валидности. Очевидно, однако, что в каждом конкретном эксперименте величина главного эффекта, т. е. наблюдаемого различия результатов экспериментальной и контрольной группы, будет варьировать не только под воздействием независимой переменной, но и просто в результате действия различных случайных возмущений. Конечно, если бы наш эксперимент был идеален и абсолютно надежен (см. выше), то при каком угодно числе повторений мы бы всегда получали одну и ту же истинную оценку величины воздействия (при отсутствии или контроле смешивающего влияния дополнительных переменных). Однако реальные эксперименты – особенно, как уже говорилось, эксперименты в социальных науках – не бывают и не могут быть идеальными и безупречно надежными. Следовательно, перед исследователем всегда стоит задача статистической оценки значимости полученных результатов. Вероятностным «воплощением» содержательной экспериментальной гипотезы является статистическая гипотеза. Принятие или непринятие статистической гипотезы – необходимое, но недостаточное условие принятия или отвержения содержательной гипотезы, проверяемой в эксперименте. Проверяемая в конкретном эксперименте статистическая гипотеза всегда формулируется как гипотеза о том, что при бесконечном количестве повторений этого эксперимента среднее различие между экспериментальной и контрольной группами (или между воздействием разных уровней независимой переменной) равнялось бы нулю. Такую статистическую гипотезу, фактически сводящуюся к утверждению о случайном характере наблюдаемых в реальном эксперименте различий, называют нулевой гипотезой, или нуль-гипотезой (Н0). Отвержение или неотвержение нуль-гипотезы позволяет говорить о том, что в данном эксперименте содержательная гипотеза подтвердилась, либо подтвердилась противоположная ей альтернативная гипотеза, либо не было получено подтверждения ни одной из них.
Вспомним воображаемый эксперимент Фишера с чаем и молоком, описанный в начале главы. Мы отмечали, что при использовании тактики случайного угадывания испытуемая смогла бы правильно определить последовательность наполнения чашки примерно в 1 случае из 70. Следовательно, 2 «попадания» из 100 даже при очень большом количестве испытаний едва ли могут считаться значимым результатом. Куда достовернее выглядят 90 или даже 95 «попаданий» из 100 (оставшиеся «ошибки» можно отнести на счет действия случайных факторов).
Вообще, критерии значимости и статистические методы, используемые при проверке статистической гипотезы для конкретного плана эксперимента, называют статистическими моделями. Для планов с контрольной группой основная статистическая модель – это использование t-критерия, о чем подробнее говорится чуть ниже. Для более сложных планов многомерных или факторных экспериментов, общий обзор которых дается в следующем разделе главы, ведущие статистические модели – это дисперсионный анализ и использование F-критерия Фишера.
Итак, для того чтобы оценить статистическую значимость в элементарных рандомизированных планах, описанных выше, нам необходимо проверить статистическую гипотезу о разности средних значений зависимой переменной в контрольной и экспериментальной труппах. Конкретное значение разности средних значений зависимой переменной в экспериментальной и контрольной группе, обнаруженное в отдельном эксперименте (скажем, 4 балла по некоторой «шкале пацифизма»), нужно соотнести с определенным интервалом, в который это значение «укладывается» с заданной (доверительной) вероятностью. Иными словами, нужно решить задачу интервального оценивания, подобную задаче оценки отдельного параметра совокупности в выборочном обследовании. Разница в том, что проводя эксперимент, мы интересуемся не вероятными пределами, в которых лежит некая характеристика выборки из реально существующей совокупности, а пределами, в которых лежит полученный нами в эксперименте результат относительно результата воображаемой бесконечной совокупности идентичных экспериментов. Нулевая гипотеза утверждает, что истинное значение различия средних равно нулю, варьируя в каких-то пределах от эксперимента к эксперименту (т. е. Н0: (Xэксперимент - Хконтрольн) =0). Если удается показать, что полученное в эксперименте значение разности групповых средних не позволяет принять нулевую гипотезу, то делается вывод о подтверждении гипотезы, противоположной нулевой (т. е. Н1:
(Хэксперимент. - Хконтрольн.) <> 0) – о статистической значимости различий между группами – и, значит, о подтверждении экспериментальной гипотезы (или о подтверждении гипотезы, противоположной экспериментальной, – если различие между экспериментальной и контрольной группой оказалось с обратным знаком). Заметьте, что нулевая гипотеза всегда формулируется как гипотеза о том, что истинное значение разности средних (или, скажем, величины взаимосвязи между двумя переменными) равно нулю, а полученные в эксперименте величины отличаются от нуля исключительно из-за случайной ошибки выборки. Чем дальше от нуля – в ту или другую сторону – расположено наблюдаемое значение, тем больше его статистическая значимость и меньше вероятность того, что оно явилось результатом ошибки выборки.
Для того чтобы сравнить полученное в эксперименте с контрольной и экспериментальной группами значение разности между средними с гипотетическим выборочным распределением этой величины для бесконечного числа испытаний (такие распределения имеются не только для разности средних, но и для средних величин, стандартных отклонений и т. д.), нужно высчитать стандартную ошибку разности между средними. Формула для стандартной ошибки разности между средними – SМэ-Мк – немного отличается от формулы стандартной ошибки средней SM12. Тем не менее она весьма проста:
где Sэ и Sк – величины стандартного отклонения, рассчитанные для экспериментальной и контрольной групп, пэ и пк – число наблюдений (испытуемых) в экспериментальной и контрольной группах.
После этого нужно определить, на сколько единиц стандартной ошибки отстоит полученная разность средних (Xэксперимент. - Хконтрольн.) от нуля, представляющего собой – в согласии с нуль-гипотезой – среднее гипотетического распределения разностей средних, t-распределения. Для этого полученную в эксперименте разность групповых средних нужно перевести в t-единицы (т. е. единицы стандартного отклонения для t-распределения). Для данной разности средних величину t можно высчитать по формуле:
Полученное значение t нужно сравнить с соответствующим значением из таблицы t-распределения для избранного уровня значимости (р = 0,05 или 0,01) и числа степеней свободы, соответствующего количеству наблюдений в каждой группе (или подвыборке). Число степеней свободы – довольно сложное статистическое понятие, анализ которого выходит за пределы этого учебника. На практике число степеней свободы можно рассматривать как величину, равную числу наблюдений (испытуемых, опрошенных, баллов и т. п.) минус число оцениваемых параметров. Для разности средних двух групп это составит число наблюдений в экспериментальной группе минус один (Ид-1) плюс число наблюдений в контрольной группе минус один (nк- 1):
Таблицы t-распределения можно найти в любом учебнике или справочнике по статистике. Здесь мы приводим лишь фрагмент такой таблицы.
Таблица Сокращенная таблица t-распределения Стьюдента (W. Gosset, 1908)
Число степеней свободы | P=0,05 | Р = 0,01 |
1 | t=12,706 | t=63,657 |
2 | t= 4,303 | t = 9,925 |
5 | t= 2,571 | t= 4,032 |
8 | t= 2,306 | t= 3,355 |
10 | t = 2,228 | t=3,169 |
14 | t=2,145 | t= 2,977 |
16 | t=2,120 | /=2,921 |
20 | t= 2,086 | / = 2,845 |
30 | t =2,042 | t= 2,750 |
60 | t =2,000 | t =2,660 |
120 | t =1,980 | /=2,617 |
00 | t= 1,960 | /=2,576 |
Рассмотрим пример вычисления t для описанного выше эксперимента, в котором изучалось воздействие антивоенного фильма на изменение установок студентов. Пусть для контрольной и экспериментальной групп при итоговом тестировании по шкале пацифистских установок были получены следующие результаты:
Наша статистическая задача заключается в том, чтобы определить, отличаются ли средние двух групп настолько, чтобы можно было отвергнуть нулевую гипотезу о том, что эти средние взяты из одной генеральной совокупности. Воспользуемся приведенной выше формулой для вычисления значения t21:
Число степеней свободы в приведенном примере: (28-1) +(34-1) =60.
Полученное значение t= 3,4760 заведомо превосходит табличные значения и для p<0,05, и для р< 0,01 (на 5%-м уровне значение /для 60 степеней свободы составит 2,00, а на 1%-м—2,660). Следовательно, мы можем отклонить нулевую гипотезу и сделать вывод, что существует статистически значимая разница между средними уровнями пацифизма в группе студентов, посмотревших антивоенный фильм, и в контрольной группе.
Важно,
однако, всегда помнить о том, что
статистическая значимость результатов
совершенно отлична от их содержательной
значимости! Даже высокая статистическая
значимость результатов эксперимента
не гарантирует, что эти результаты будут
иметь сколько-нибудь интересную интерпретацию
и повлияют на состояние современного
социологического знания. Содержательная
значимость зависит прежде всего от нашей
способности увязать экспериментальную
гипотезу с существующими социологическими
теориями.
В описанных выше экспериментах с контрольной группой каждый раз используются лишь два типа условий – «есть воздействие» либо «нет воздействия». Эти два типа условий по сути можно рассматривать как два уровня независимой переменной, которым можно присвоить условные числовые значения – например, «I» и «О». Иными словами, с точки зрения уровня измерения независимая переменная является номинальной, качественной. В контрольной группе ее значение равно нулю, в экспериментальной – единице. Однако исследователь часто располагает значительно большей информацией о независимой переменной и способен измерить и проконтролировать ее по крайней мере на трех-четырех уровнях значений. Соответственно экспериментальная гипотеза может быть сформулирована в терминах более или менее интенсивного воздействия либо наличия-отсутствия «отклика» зависимой переменной при конкретных уровнях независимой переменной.
В психологии хорошо известен закон «оптимума мотивации», так называемый закон Йеркса-Додсона.