Автор работы: Пользователь скрыл имя, 28 Февраля 2013 в 08:40, реферат
1932 г. был разработан линейный код, ставший основой штриховой идентификации. Реальное применение штриховой код впервые нашел в пищевой промышленности Великобритании с введением системы линейных кодов «Point of sale». Нововведение получило распространение в розничной и оптовой торговле, книгоиздательстве, упаковочном деле. В 1960-е гг. штриховой код был внедрен на железнодорожном транспорте США при проведении идентификации железнодорожных вагонов. В начале 70-х гг. в США был принят универсальный код UPC (Universal Product Code), который мог применяться как в промышленности, так и в торговле.
Преимущества системы EAN наиболее очевидны в электронном обмене данными. В рамках Международной организации EAN International используется стандарт электронного обмена данными EAN-СОМ. Стандарт включает в себя описание 42 стандартных сообщений (версия 1997 г.), каждое из которых имеет понятное название, например PRICAT – каталог товаров, PRODAT – данные о продукции, PARTIN – данные о предприятии, ORDERS – заказ и т. д.
Обычно торговое предприятие
имеет устойчивый круг поставщиков,
а предприятие-производитель
Используя электронное сообщение PRICAT (Price Catalogue/Каталог товаров), производитель новых товаров может одновременно обновить информацию в компьютерах магазинов и складов, которые являются потребителями его продукции. Для дополнения или исправления информации об отдельном товаре передается короткое сообщение PROD AT (Product Data/Данные о продукции). Заказ товаров (ORDERS) состоит из наименований заказчика, исполнителя и кодов товаров (EAN) с указанием требуемого количества. Полную информацию о своем предприятии, координатах, почтовом адресе, фамилиях руководителей с указанием номеров телефонов, факсов можно передать прямо на компьютер организации-партнера. Для этих целей используется стандартное электронное сообщение PARTIN (Party Information – Информация об участнике электронного обмена данными). Указав один раз полную информацию о себе, отправитель при следующих обращениях может указывать только свой идентификационный номер EAN LN. См. пример на рис. 3.
АКЦИОНЕРНОЕ ОБЩЕСТВО ЗАКРЫТОГО ТИПА «МЭЗОПЛАСТ». АДРЕС: Г. МОСКВА, ВОЛЖСКИЙ БУЛЬВАР, ДОМ 11. ПОЧТОВЫЙ ИНДЕКС: 109125, ТЕЛЕФОН: 354-57-31. ФАКС: 354-56-41. ВИД ДЕЯТЕЛЬНОСТИ: ПРОИЗВОДСТВО ТНП, РАСЧЕТНЫЙ СЧЕТ..., Ф.И.О. РУКОВОДИТЕЛЯ:... и др. |
EAN L № 4600952999993 |
Рис. 3. Пример стандартного электронного сообщения PARTIN
При пересылке каталогов, данных о продукции, заказов и счетов в заголовке сообщения ОТПРАВИТЕЛЬ, ПОЛУЧАТЕЛЬ и ВИД ПРОДУКЦИИ указываются в виде идентификационного номера, например:
вид документа ЗАКАЗ
дата документа 14.10.97
от кого 4600002999997
кому 4600952999993
вид продукции 4600952000101
количество 5000
3. Технологические штриховые коды
Идентификатор транспортируемой единицы (License plate) – уникальный номер индивидуальной транспортируемой единицы, предназначенный для ее отслеживания, независимый от ее использования, не связанный с содержимым и его особенностями и действительный в течение срока службы.
Идентификатор транспортируемой
единицы присваивается
В качестве примера предположим,
что органом регистрации
4. Радиочастотная идентификация
Наряду со штриховым кодированием все большее распространение получает радиочастотная идентификация, или сокращенно REID (Radio Frequency IDentification).
Типичная система RFID состоит из:
• радиочастотной метки или транспондера (по-английски – Tag, Transponder);
• считывателя информации (Reader) и
• устройства для обработки информации – компьютера.
Метка и считыватель связываются между собой радиочастотным каналом.
Считыватель содержит в своем составе передатчик и антенну, посредством которых излучается электромагнитное поле определенной частоты. Попавшие в зону действия считывающего поля радиочастотные метки «отвечают» собственным сигналом, содержащим полезную информацию (например код товара), на той же самой или другой частоте. Сигнал улавливается антенной считывателя, полезная информация расшифровывается и передается в компьютер для обработки.
Радиочастотная метка обычно включает в себя приемник, передатчик, антенну и блок памяти для хранения информации. Приемник, передатчик и память конструктивно выполняются в виде отдельной микросхемы (чипа). Иногда в состав конструкции метки включается источник питания (например, литиевая батарейка).
Метки с источниками питания называются активными (Active). Дальность считывания активных меток не зависит от энергии считывателя. Пассивные метки (Passive) не имеют собственного источника питания, а необходимую для работы энергию получают из поступающего от считывателя электромагнитного сигнала. Дальность чтения пассивных меток зависит от энергии считывателя. Преимуществом активных меток по сравнению с пассивными является значительно большая (не менее чем в 2-3 раза) дальность считывания информации и высокая допустимая скорость движения активной метки относительно считывателя. Преимуществом пассивных меток является практически неограниченный срок их службы (не требуют замены батареек).
Способы записи информации на метку
Информация в устройство памяти радиочастотной метки может быть занесена различными способами. Способ записи информации зависит от конструктивных особенностей метки. В зависимости от этого различают следующие типы меток:
Read Only – метки, которые работают только на считывание информации. Необходимые для хранения данные заносятся в память метки изготовителем и не могут быть изменены в процессе эксплуатации.
WORM – метки (Write Once Read Many) для однократной записи и многократного считывания информации. Они поступают от изготовителя без каких-либо данных пользователя в устройстве памяти. Необходимая информация записывается самим пользователем, но только один раз. При необходимости изменить данные потребуется новая метка.
R/W – метки (Read/Write) многократной записи и многократною считывания информации.
Диапазоны частот
Частоты электромагнитного
излучения считывателя и
Таблица 6
Применение радиочастотных меток различных диапазонов частот
Диапазон частот |
Характеристики системы |
Примеры применения |
Низкие 100-500 кГц |
Малая дальность считывания, низкая стоимость меток |
Контроль доступа. Идентификация животных. Системы инвентаризации |
Промежуточные 10-15 МГц |
Средняя дальность считывания |
Контроль доступа. Смарт-карты |
Высокие 850-950 МГц 2,4-5,0 ГГц |
Большая дальность и скорость считывания, требуется точное нацеливание считывателя, высокая стоимость меток |
Наблюдение за перевозкой грузов железной дорогой. Системы взимания платы за пользование дорогой с водителей автомобилей |
Низкочастотные метки
имеют встроенные антенны в виде
многоконтурных (несколько сотен) обмоток.
Высокочастотные метки имеют
одноконтурные обмотки (диполь-антенна).
Наименьшими размерами и
Недостатки радиочастотных меток
К недостаткам радиочастотных меток относятся:
• относительно высокая стоимость;
• невозможность размещения под металлическими и электропроводными поверхностями;
• взаимные влияния (коллизии);
• подверженность помехам в виде электромагнитных полей.
Использовать радиочастотные
метки целесообразно для защиты
дорогих товаров от краж или для
обеспечения сохранности
Во многих случаях в поле действия считывателя может одновременно попасть несколько радиочастотных меток. Это может быть сделано умышленно, например в магазине при проходе через пункт контроля. Сложно идентифицировать и подсчитать количество меток каждого типа, одновременно попавших в поле действия считывателя, не пропустив ни одной из них. В считывателях, обладающих такими возможностями, реализован специальный алгоритм антиколлизии. Технологии антиколлизии пока мало применимы в связи с тем, что их реализация приводит к значительному увеличению времени считывания.
Системы радиочастотной идентификации могут быть чувствительны к помехам в виде электромагнитных полей от включенных компьютеров (мониторов).
Использование радиочастотных меток
Пример 1. Защита автомобильных прицепов от угонов
В Великобритании широко распространены
автомобильные прицепные
Пример 2. Электронная маркировка товаров в торговле Компания Sainsbury's Supermarkets (Великобритания), обладающая сетью из 381 супермаркета, приняла решение об электронной маркировке товаров. Малоразмерные метки RFID толщиной с лист бумаги запрессовываются в упаковку товаров еще на этапе их производства. В магазинах установлены детекторы защиты от краж на входах и выходах торгового зала. Детекторы обнаруживают присутствие радиочастотной метки и издают сигнал тревоги. Дезактиваторы меток расположены у кассира. Стандартные сканеры штрихового кода доработаны и позволяют вместо традиционных двух последовательных операций считывания кода товара с последующим снятием защиты выполнять одну, объединяющую обе указанные функции. Система доказала свою эффективность. В первую очередь маркируются товары из группы риска (наиболее подверженные кражам), а также товары в дорогих секциях. Маркированные и немаркированные товары не отличаются по внешнему виду (виден только штриховой код, но неизвестно, запрессована ли метка в упаковку и в каком месте). Применение указанной схемы сокращает время работы кассира и общее количество контрольного оборудования в торговом зале.
5. Кодирование
товаров в системах
Стандарт EDIFACT
Стандарт EDIFACT (Electronic Data Interchange For Administration, Commerce and Transport) определяет формализованные документы для использования в электронном документообороте в управлении, коммерции и транспорте, структуру и систему представления этих документов.
Стандарт электронного обмена данными EDI начал разрабатываться в Европе в конце 70-х гг. В Европейской экономической комиссии ООН (ЕЭК ООН) Рабочая группа по упрощению процедур международной торговли несколько доработала EDIFACT и рекомендовала его в качестве международного стандарта, который получил название UN/ EDIFACT.
Первая версия UN/EDIFACT была опубликована Международной организацией по стандартизации ISO в 1988 г.
Однако к моменту принятия международного стандарта UN/ EDIFACT уже существовали два национальных стандарта:
• западноевропейский – UN/GTDI (был разработан в Великобритании и использовался в национальной торговой системе TRADANET). Сокращенное наименование – TDI;
• североамериканский – ANSI X12 (разработан комитетом Х12 Американского национального института по стандартизации, ANSI). Известен под сокращенным наименованием XI2.
В настоящий момент пользователям
рекомендовано внедрять стандарт EDIFACT.
В нашей стране стандарт ЭДИФАКТ
был принят еще в 1990 г. EDIFACT – это
электронный стандарт сообщений, который
позволяет преобразовывать
6. Кодирование внешнеторговых данных
кодирование товаров для внешней торговли выполняется в соответствии со следующими классификаторами:
• сокращения для.«Инкотермс» (рекомендация № 5 рабочей группы по упрощению процедур международной торговли ЕЭКООН);
• классификатор видов транспорта (рекомендация № 19 рабрчей группы по упрощению процедур международной торговли ЕЭК ООН);
• коды для единиц измерения, используемых в международной торговле (рекомендация № 20 рабочей группы по упрощению процедур международной торговли ЕЭК ООН);
• коды для видов груза, упаковок и материалов упаковок (с дополнительными кодами для наименования упаковок) – рекомендация № 21 рабочей группы по упрощению процедур международной торговли ЕЭК ООН;