Автор работы: Пользователь скрыл имя, 28 Апреля 2013 в 12:54, лекция
Работа содержит курс лекций по "Безопасности жизнедеятельности".
,
где w - угловая частота переменного тока (w = 2p×f = 314), С - емкость фазных проводов относительно земли.
В этом случае, как видим, сопротивление изоляции фаз не влияет на величину тока, протекающего через человека и, таким образом, не обеспечивает безопасности при прикосновении к сети.
Рисунок 4.3
Трехфазная четырехпроводная сеть с глухозаземленной нейтралью. В этом случае (см. рисунок 1.4) ток, проходящий через человека, определяется зависимостью
(1.5)
где r0 - сопротивление заземления нейтрали. Согласно ПУЭ, r0 не должно превышать 10 Ом, следовательно, в выражении (1.5) значением r0 можно пренебречь. Если человек при этом находится в особо электроопасном помещении, можно считать, что сопротивление цепи “человек - земля” не превышает Rch = Rh =1000 Ом (Rh - активное сопротивление тела человека). Человек при этом оказывается практически под фазным напряжением Uф, а ток, протекающий через него в 2,2 раза превышает ток порога фибрилляции. В помещениях же с сухими электроизоляционными полами Rch >> Rh и Uh << Uф , и в этом случае вероятен исход, благоприятный для человека.
Из уравнения (1.5) следует также, что при нормальном режиме работы трехфазной четырехпроводной сети с глухозаземленной нейтралью ток Ih опасен для жизни независимо от сопротивления изоляции и емкости линии, так как проводимости фазных проводов относительно земли малы по сравнению с проводимостью заземления нейтрали.
Из сказанного выше следует, что исправные трехпроводные сети с изолированной нейтралью обеспечивают гораздо бòльшую безопасность при однофазном прикосновении человека к сети. Однако, на практике, для электроснабжения предприятий, жилых помещений чаще используют четырехпроводную схему с заземленной нейтралью. Она более предпочтительна, поскольку обеспечить высокое сопротивление изоляции электрических сетей, к котрым присоединяются сотни и тысячи потребителей практически невозможно, и преимущества сети с изолированной нейтралью не могут быть реализованы. В то же время сети с глухозаземленной нейтралью имеют технологическое преимущество, так как они универсальны, и к ним могут подключаться как однофазные, так и трехфазные нагрузки. Кроме того, они менее опасны в аварийном режиме замыкания фазы на землю.
Выделяют следующие виды аварийного режима работы электроустановок:
а) нарушение изоляции фаз относительно земли (например, при падении неизолированного провода электросети на землю);
б) появление напряжения на корпусе электроустановок, электроприборов из-за нарушения изоляции проводов внутри корпуса.
А. Нарушение изоляции фаз относительно земли. Рассмотрим ситуацию, возникающую при нарушении изоляции фаз относительно земли.
Четырехпроводная сеть с глухозаземленной нейтралью. При аварийном режиме, когда одна из фаз, например, фаза 3 (рисунок 1.5) замкнута на землю через сопротивление rзам (обычно это составляет десятки Ом), а остальные фазы имеют исправную изоляцию, напряжение прикосновения определяется выражением
(1.6)
А ток Ih, проходящий через человека:
(1.7)
Рисунок 4.4
Согласно ПУЭ r0 обычно не превышает 4 Ом и rзам >> r0, поэтому напряжение, под которым оказывается человек, прикоснувшись в аварийном режиме к фазному проводу трехфазной сети с заземленной нейтралью, значительно меньше линейного, но несколько больше фазного:
Uл >> Uh > Uф .
Таким образом, прикосновения человека к исправной фазе сети с заземленной нейтралью в период аварийного режима более опасно, чем при нормальном режиме.
Трехпроводная сеть с изолированной нейтралью. При аварийном режиме замыкания фазы на землю (пусть это будет, например, также фаза 3) через малое rзам. (проводимости g1, g2, g3 в формуле 1.3) значение тока, проходящего через человека при его прикосновении к исправной фазе:
(1.8)
а напряжение прикосновения Uh определится как
, (1.9)
Если принять rзам. = 0, то, согласно уравнению (1.9) человек окажется под линейным напряжением. В реальных условиях rзам. cоставляет несколько десятков Ом, т.е. значительно меньше Rсh, поэтому человек оказывается под напряжением, близким к линейному.
Этот случай является наиболее опасным, сравните выражения (1.2), (1.7), (1.8), имея в виду, что
Трехпроводные сети напряжением V < 1000 В с изолированной нейтралью применяются там, где невозможно обеспечить работающим сухие электроизолирующие полы и нормальные метеоусловия (например, в шахтах, рудниках), а также где велика вероятность прикосновения к токоведущим частям, например, в электротехнических лабораториях. Однако безопасность гарантируется только в случае исправной изоляции и малой емкости линии. В аварийном режиме они становятся намного опаснее, чем четырехпроводные сети с глухозаземленной нейтралью в том же аварийном режиме. Поэтому в сетях с изолированной нейтралью применяют устройства непрерывного контроля изоляции, в том числе автоматически отключающие поврежденные участки сети.
Потенциал токоведущей части относительно земли, j3, определяется выражением
где IЗ – ток замыкания, rЗ – сопротивление растеканию тока. При этом вокруг точки замыкания на поверхности грунта происходит снижение потенциала по закону, представленному на рисунке 1.6 Нахождение человека на расстоянии менее 20 м опасно для человека, т.к. он может попасть под опасную разность потенциалов (шаговое напряжение).
Рисунок 4.5 - Растекание тока в земле
через полусферический
По мере удаления от места замыкания токоведущей части на землю значение потенциала грунта снижается и становится равным нулю теоретически в бесконечности. Практически на расстоянии 20 м от места замыкания потенциал грунта принимают равным нулю. Более точно форма потенциальной кривой определяется удельным сопротивлением грунта и формой заземлителя. Для сферического заземлителя потенциальная кривая представляет собой гиперболу.
Напряжение прикосновения. Напряжением прикосновения Uпр [В] называется разность потенциалов между двумя точками цепи тока, которых одновременно касается человек, или, другими словами, падение напряжения на сопротивлении тела человека Rh. Если пренебречь сопротивлением обуви и основания, на котором стоит человек, то
Uпр = Ih×Rh
,
где Ih - ток, проходящий через человека.
В устройствах защитных заземлений,
занулений и т.п. одна из этих точек
имеет потенциал заземлителя jЗ
Uпр = j3 - jос = j3 (1 - ) или Uпр = j3 × a, (1.12)
где a - коэффициент напряжения прикосновения.
a = 1 -
.
В зависимости от расстояния человека до заземлителя коэффициент напряжения прикосновения может принимать значения 0,1 ¸ 1, однако в реальных условиях он близок к единице, поэтому в расчетах для одиночных заземлителей принимается a = 1.
Из рисунка видно, что из двух случаев расположения заземлителей случай I оказывается более опасным, так как напряжение прикосновения получается более высоким (Uпр1 > Uпр2). Наиболее опасным будет прикосновение, когда человек находится на расстоянии ³ 20 м от заземлителя.
Рисунок 4.6
Напряжение шага. Напряжением шага называется напряжение между двумя точками на поверхности грунта, находящимися одна от другой на расстоянии шага, которое принимается равным 0,8 м (см. рисунок 4.7),
Рисунок 4.7
Uш = Iш×Rch , (1.14)
где Iш - ток, , проходящий по пути “нога-нога”, Rch - сопротивление цепи “человек-земля”. Если выразить напряжение шага через разность потенциалов, имеем
(1.15)
Чтобы выразить jх и jх+а через jз, разделим обе части (1.15) на jз .
, или
где .
Коэффициент b называется коэффициентом напряжения шага (коэффициентом шага) и учитывает форму потенциальной кривой. Значения b лежат в диапазоне 0,15 ¸ 0,6.
Напряжение шага зависит, таким образом, от величины потенциала в точке заземления, формы заземлителя и сопротивления грунта. Однако на практике часто говорят о шаговом напряжении между условными точками поверхности, которых касаются ноги человека (а иногда, в случае его падения руки и ноги), расстояние между ними не обязательно 0,8 м. Вот почему, оказавшись в зоне растекания тока, выходить из нее следует, осторожно передвигаясь как можно более мелкими шажками или прыжками «ноги вместе».
Коэффициент напряжения шага играет большую роль в понимании механизма действия защитного заземления.