Лекции по БЖД

Автор работы: Пользователь скрыл имя, 28 Апреля 2013 в 12:54, лекция

Описание

Работа содержит курс лекций по "Безопасности жизнедеятельности".

Работа состоит из  22 файла

Лекция 05_Психофизиологические характеристики.doc

— 178.50 Кб (Открыть документ, Скачать документ)

Лекция 02_Негативные факторы.doc

— 78.00 Кб (Открыть документ, Скачать документ)

Лекция 04_Эргатические системы.doc

— 305.00 Кб (Открыть документ, Скачать документ)

Лекция 20_Пожаробезопасность.doc

— 78.00 Кб (Открыть документ, Скачать документ)

Лекция 19._ЧС_Поражающие факторы.doc

— 89.00 Кб (Открыть документ, Скачать документ)

Лекция 18_ЧС_Основные понятия.doc

— 68.50 Кб (Открыть документ, Скачать документ)

Лекция 16_Электробезопасность.doc

— 373.00 Кб (Открыть документ, Скачать документ)

Лекция 15-Воздействие электрического тока.doc

— 1.52 Мб (Скачать документ)

                ,                                                        (1.4)

где w - угловая частота переменного тока (w = 2p×f = 314), С - емкость фазных проводов относительно земли.

В этом случае, как видим, сопротивление изоляции фаз не влияет на величину тока, протекающего через человека и, таким образом, не обеспечивает безопасности при прикосновении к сети.

Рисунок 4.3



Трехфазная четырехпроводная сеть с глухозаземленной нейтралью.  В этом случае (см. рисунок 1.4) ток, проходящий через человека, определяется зависимостью

                     (1.5)

где r- сопротивление заземления нейтрали. Согласно ПУЭ, r0 не должно превышать 10 Ом, следовательно, в выражении (1.5) значением r0 можно пренебречь. Если человек при этом находится в особо электроопасном помещении, можно  считать, что сопротивление цепи “человек - земля” не превышает Rch = Rh =1000 Ом (Rh - активное сопротивление тела человека). Человек при этом оказывается практически под фазным напряжением  Uф,  а ток, протекающий через него в 2,2 раза превышает ток порога фибрилляции. В помещениях же с сухими электроизоляционными полами Rch >> Rh и Uh << Uф , и в этом случае вероятен исход, благоприятный для человека.

Из уравнения (1.5) следует также, что при нормальном режиме работы трехфазной четырехпроводной сети с глухозаземленной нейтралью ток Ih опасен для жизни независимо от сопротивления изоляции и емкости линии, так как проводимости фазных проводов относительно земли малы по сравнению с проводимостью заземления нейтрали.

Из сказанного выше следует, что исправные трехпроводные сети с изолированной нейтралью обеспечивают гораздо бòльшую безопасность при однофазном прикосновении человека к сети. Однако, на практике, для электроснабжения предприятий, жилых помещений чаще используют четырехпроводную схему с заземленной нейтралью. Она более предпочтительна, поскольку обеспечить высокое сопротивление изоляции электрических сетей, к котрым присоединяются сотни и тысячи потребителей практически невозможно, и преимущества сети с изолированной нейтралью не могут быть реализованы. В то же время сети с глухозаземленной нейтралью имеют технологическое преимущество, так как они универсальны, и к ним могут подключаться как однофазные, так и трехфазные нагрузки. Кроме того, они менее опасны в аварийном режиме замыкания фазы на землю.

4.2 Аварийный режим

 

 Выделяют следующие  виды аварийного режима работы  электроустановок:

а) нарушение изоляции фаз относительно земли (например, при падении неизолированного провода электросети на землю);

б) появление напряжения на корпусе  электроустановок, электроприборов из-за нарушения изоляции проводов внутри корпуса.

А. Нарушение изоляции фаз относительно земли. Рассмотрим ситуацию, возникающую при нарушении изоляции фаз относительно земли.

Четырехпроводная сеть с глухозаземленной нейтралью. При аварийном режиме, когда одна из фаз, например, фаза 3 (рисунок 1.5) замкнута на землю через  сопротивление rзам (обычно это составляет десятки Ом), а остальные фазы имеют исправную изоляцию, напряжение прикосновения определяется выражением

                                               (1.6)

А ток Ih, проходящий через человека:

                                                         (1.7)

 

Рисунок 4.4



Согласно ПУЭ r0 обычно не превышает 4 Ом и rзам >>  r0, поэтому напряжение, под которым оказывается человек, прикоснувшись в аварийном режиме к фазному проводу трехфазной сети с заземленной нейтралью, значительно меньше линейного, но несколько больше фазного: 

 

Uл >> Uh > Uф .

 

 Таким образом, прикосновения  человека к исправной фазе  сети с заземленной нейтралью в период аварийного режима более опасно, чем при нормальном режиме.

Трехпроводная сеть с изолированной нейтралью. При аварийном режиме замыкания фазы на землю (пусть это будет, например, также фаза 3) через малое  rзам. (проводимости g1, g2, g3 в формуле 1.3) значение тока, проходящего через человека при его прикосновении к исправной фазе:

 

                                                                 (1.8)

 

а напряжение прикосновения Uh определится как

 

                                   ,         (1.9)

Если принять rзам. = 0, то, согласно уравнению (1.9) человек окажется под линейным напряжением. В реальных условиях rзам. cоставляет несколько десятков Ом, т.е. значительно меньше Rсh,  поэтому человек оказывается под напряжением, близким к  линейному.

Этот случай является наиболее опасным, сравните выражения (1.2), (1.7), (1.8), имея в  виду, что

 

                                         .

Трехпроводные сети напряжением V < 1000 В с изолированной нейтралью применяются там, где невозможно обеспечить работающим сухие электроизолирующие полы и нормальные метеоусловия (например, в шахтах, рудниках), а также где велика вероятность прикосновения к токоведущим частям, например, в электротехнических лабораториях.  Однако безопасность гарантируется только в случае исправной изоляции и малой емкости линии. В аварийном режиме они становятся намного опаснее, чем четырехпроводные сети с глухозаземленной нейтралью в том же аварийном режиме. Поэтому в сетях с изолированной нейтралью применяют устройства непрерывного контроля изоляции, в том числе автоматически отключающие поврежденные участки сети.

Б. Напряжения прикосновения  и шага при замыкании на землю.  Протекание тока через землю может  происходить только при наличии замкнутого контура, т.е. соединения с землей как минимум двух точек сети с разными потенциалами.

Потенциал токоведущей части  относительно земли, j3, определяется выражением

                                       j3 = Iзrз ,                                                (1.10)

где IЗ – ток замыкания,  rЗ – сопротивление растеканию тока. При этом вокруг точки замыкания на поверхности грунта происходит снижение потенциала по закону, представленному на рисунке 1.6 Нахождение человека на расстоянии менее 20 м опасно для человека, т.к. он может попасть под опасную разность потенциалов (шаговое напряжение).

 

Рисунок 4.5 - Растекание тока в земле  через полусферический заземлитель.



По мере удаления от места замыкания  токоведущей части на землю значение потенциала грунта снижается и  становится равным нулю теоретически в бесконечности. Практически на расстоянии 20 м от места замыкания потенциал грунта принимают равным нулю. Более точно форма потенциальной кривой определяется удельным сопротивлением грунта и формой заземлителя. Для сферического заземлителя  потенциальная кривая представляет собой гиперболу.

 Напряжение прикосновения. Напряжением прикосновения Uпр [В] называется разность потенциалов между двумя точками цепи тока, которых одновременно касается человек, или, другими словами, падение напряжения на сопротивлении тела человека Rh. Если пренебречь сопротивлением обуви и основания, на котором стоит человек, то

 

                             Uпр = Ih×Rh ,                                                   (1.11)

 

где Ih - ток, проходящий через человека.

В устройствах защитных заземлений, занулений и т.п. одна из этих точек  имеет потенциал заземлителя jЗ, а другая - потенциал основания jос (см. рисунок 4.6). Тогда

                    Uпр = j3 - jос = j3 (1 - )   или Uпр = j3 × a,               (1.12)

где a - коэффициент напряжения прикосновения.

                               a = 1 - .                                     (1.13)

В зависимости от расстояния человека до заземлителя коэффициент напряжения прикосновения  может принимать значения 0,1 ¸ 1, однако в реальных условиях он близок к единице, поэтому в расчетах для одиночных заземлителей принимается  a = 1.

Из  рисунка видно, что из двух случаев  расположения заземлителей случай I оказывается более опасным, так как напряжение прикосновения получается более высоким (Uпр1 > Uпр2). Наиболее опасным будет прикосновение, когда человек находится на расстоянии ³ 20 м от заземлителя.

 

Рисунок  4.6



Напряжение шага.  Напряжением шага называется напряжение между двумя точками на поверхности грунта, находящимися одна от другой на расстоянии шага, которое принимается равным 0,8 м (см. рисунок 4.7),

 

 

Рисунок 4.7



        Uш = Iш×Rch ,            (1.14)

 

где Iш - ток, , проходящий по пути “нога-нога”, Rch - сопротивление цепи “человек-земля”. Если выразить напряжение шага через разность потенциалов, имеем

              (1.15)

 Чтобы выразить jх и jх+а  через jз, разделим обе части (1.15) на jз .

 

,    или                                   (1.16)

  где  .

Коэффициент b называется коэффициентом напряжения шага (коэффициентом шага) и учитывает форму потенциальной кривой. Значения b  лежат в диапазоне 0,15 ¸ 0,6.

Напряжение шага зависит, таким образом, от величины потенциала в точке заземления, формы заземлителя и сопротивления грунта. Однако на практике часто говорят о шаговом напряжении между условными точками поверхности, которых касаются ноги человека (а иногда, в случае его падения руки и ноги), расстояние между ними не обязательно 0,8 м. Вот почему, оказавшись в зоне растекания тока, выходить из нее следует,  осторожно передвигаясь как можно более мелкими шажками или прыжками «ноги вместе».

Коэффициент напряжения шага играет большую роль в понимании механизма действия защитного заземления.


Лекция 13_ИИ.doc

— 232.50 Кб (Открыть документ, Скачать документ)

Лекция 12_ЭМИ.doc

— 157.50 Кб (Открыть документ, Скачать документ)

Лекция 11_Шум-Вибрация.doc

— 704.50 Кб (Открыть документ, Скачать документ)

Лекция 10_Шум.doc

— 112.00 Кб (Открыть документ, Скачать документ)

БЖД13.DOC

— 35.50 Кб (Скачать документ)

БЖД10.DOC

— 59.50 Кб (Скачать документ)

БЖД8.DOC

— 25.50 Кб (Скачать документ)

БЖД9.DOC

— 399.00 Кб (Скачать документ)

Информация о работе Лекции по БЖД