Лекции по "БЖД"

Автор работы: Пользователь скрыл имя, 13 Сентября 2013 в 12:37, курс лекций

Описание

Выход человечества в XXI век – это переход в период грандиозных социальных, технических и культурных перемен, называемый учеными глобальной революцией. На смену двум первым «волнам цивилизации» (аграрной и индустриальной) пришла третья волна, характеризуемая достижениями мощных технологий, демократизацией общества, интеграцией человечества (информационной, экономической, культурной и т. п.), а также необходимостью обеспечения безопасности от жизнедеятельности человека.

Содержание

ВВЕДЕНИЕ…………………………………………………………………………………. 6
1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ КУРСА «БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯ-ТЕЛЬНОСТИ» …………………………………………………………...
7
1.1. 1Цель, задачи курса, объекты и предметы изучения …………………….. 7
1.2. Опасность, риск, безопасность, чрезвычайные ситуации …………... 8
1.3. Принципы, методы и средства обеспечения безопасности…………... 10
1.4. Опасные и вредные факторы среды обитания……………………….. 11
1.4.1. Факторы производственной среды…………………………….... 11
1.4.2. Факторы бытовой (жилой) среды……………………………….. 12
2. ОСНОВЫ ФИЗИОЛОГИИ ТРУДА, ОСОБЕННОСТИ СТРУКТУРНО-ФУНКЦИОНАЛЬНОЙ ОРГАНИЗАЦИИ ЧЕЛОВЕКА………………………
13
2.1.. Труд как высшая форма деятельности человека ………………………. 13
2.2.. Классификация трудовой деятельно-сти……………………………… 14
2.3.. Энергетические затраты организма челове-ка………………………… 16
2.4. Структурно-функциональные системы восприятия и компенса-ции организмом человека факторов среды обитания ……………………...
18
2.5. Эргономические аспекты деятельности челове-ка……………………. 22
3. Микроклимат производственных и непроизводственных помещений …… 24
3.1. Климат помещений, его парамет-ры………………………………………. 24
3.2. Теплообмен организма человека со средой обитания ……………….. 25
3.3. Гигиеническое нормирование параметров микроклимата производственных помещений……………………………………………………… 26
3.4. Системы обеспечения параметров микроклимата и состава воздуха . 28
4. ВРЕДНЫЕ, ОТРАВЛЯЮЩИЕ И ЯДОВИТЫЕ ВЕЩЕСТВА (ВОЯВ)…… 28
4.1. Классификация ВОЯВ……………………………………………………... 29
4.2. Пути проникновения ВОЯВ в организм и механизм их действия…. 30
4.3. Основные источники химического загрязнения воздуха бытовой среды… 31
4.4. Нормирование и контроль запыленности и загазованности воздуш-ной среды …………………………………………………………………… 33
4.5. Вентиляционные системы как средство нормализации параметров воздушной среды …………………………………………………………... 34
4.5.1. Классификация систем вентиляции…………………………. 34
4.5.2. Оборудование вентиляционных систем……………………….. 37
5. ПРОИЗВОДСТВЕННОЕ ОСВЕЩЕНИЕ …………………………………… 39
5.1. Основные светотехнические величины ………………………………… 39
5.2. Классификация систем освещения………...…………………………. 41
5.3. Нормирование освещения ………………………………………………... 43
6. АКУСТИЧЕСКИЕ КОЛЕБАНИЯ ВОЗДУШНОЙ СРЕДЫ ………………… 45
6.1. Шум слышимого диапазона 45
6.2. Ультразвук………………………………………………………………….. 50
6.3. Инфразвук…………………………………………………………………… 52
6.4. Методы и средства защиты от шумовых воздействий ………………. 52
7. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ………………………………………………. 55
7.1. Источники, параметры, действие вибрации……………………………. 55
7.2. Нормирование вибраций…………………………………………………... 58
7.3. Методы и средства защиты от вибрационных нагрузок …………… 58
8. ЭЛЕКТРОМАГНИТНЫЕ ПОЛЯ ………………………………………………. 59
8.1. Виды и источники электромагнитных полей……………………………. 59
8.1.1. Электростатические поля……………………………………...…. 61
8.1.2. Электромагнитные поля промышленной частоты…………… 62
8.1.3. Электромагнитные поля радиочастот………………………….. 63
8.2. Средства защиты от электромагнитных излучений………..…………. 65
8.3. Магнитные поля мобильной связи………………………………………. 65
8.4. Лазерные излучения………………………………………………………... 67
8.5. Ультрафиолетовые излучения………………………………………… 68
9. ИОНИЗИРУЮЩИЕ ИЗЛУЧЕНИЯ……………………………………………... 69
9.1. Виды и источники ионизирующих излучений………………………… 69
9.2. Критерии опасности ионизирующих излучений……………………… 71
9.3. Воздействие ионизирующих излучений………………………………… 72
9.4. Защита от действия ионизирующих излучений……………………….. 73
10. ПРОИЗВОДСТВЕННАЯ БЕЗОПАСНОСТЬ……………………………….. 74
10.1. Электробезопас-ность…………………………………………………… 74
10.1.1. Действие электрического тока на организм человека………. 74
10.1.2. Факторы, влияющие на степень поражения электрическим током.………………………………………………………………… 75
10.1.3. Условия поражения электрическим током………….………… 77
10.1.4. Профилактика электротравматизма…………………………... 82
10.1.5. Оказание первой помощи пострадавшему от электрического тока…………………………………………………………… 86
10.2. Безопасность эксплуатации установок, работающих под давлением 88
10.2.1. Меры безопасности при эксплуатации паровых и водогрей-ных котлов……………………………………………………… 88
10.2.2. Меры безопасности при эксплуатации сосудов и баллонов, работающих под давлением…………………………………… 90
10.3. Безопасность производства погрузочно-разгрузочных и подъёмно-транспортных работ…………………………………………………… 92
11. МОЛНИЕЗАЩИТА ЗДАНИЙ И СООРУЖЕНИЙ………………………… 94
12. ОБЕСПЕЧЕНИЕ БЕЗОПАСНОСТИ В ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЯХ 96
12.1. Чрезвычайные ситуации, их классификация………………………... 96
12.1.1. Чрезвычайные ситуации естественного происхождения…. 96
12.1.2. Чрезвычайные ситуации техногенного происхожде-ния…………………………………………………………..….. 107
12.2. Устойчивость работы объектов экономики в чрезвычайных ситуациях. 125
12.3. Единая государственная система предупреждения и ликвидации ЧС. 129
12.3.1. Структура РСЧС……………………………………………….. 129
12.3.2. Режимы функционирования РС……………………………… 132
12.3.3. Подготовка населения в области защиты от чрезвычайных ситуаций….…………………………………………………… 133
12.4. Организация гражданской обороны (ГО)……………………………. 134
13. ПРАВОВЫЕ, НОРМАТИВНО-ТЕХНИЧЕСКИЕ И ОРГАНИЗАЦИОННЫЕ ОСНОВЫ ОБЕСПЕЧЕНИЯ Б

Работа состоит из  1 файл

конспект лекций БЖД.doc

— 5.74 Мб (Скачать документ)

       (6.2)

где ρ×с – удельное акустическое сопротивление.

Величины звукового  давления и интенсивности звука, с которыми приходится иметь дело в практике борьбы с шумом, могут  меняться в широких пределах: по давлению – до 108 раз, по интенсивности – до 1016 раз. Оперировать такими цифрами несколько неудобно.

Кроме того, слуховой анализатор подчиняется основному психофизическому закону (Вебера-Фехнера):

,

где Е – интенсивность ощущений; I – интенсивность раздражителя; С и К – некоторые постоянные величины.

Поэтому были введены логарифмические величины уровня звукового давления и интенсивности звука.

Уровень звукового давления, дБ:

,       (6.3)

где Ро = 2×10-5 Па – пороговое звуковое давление; Р – среднеквадратичная величина звукового давления.

Уровень интенсивности  звука, дБ:

       (6.4)

где I – действующая интенсивность звука; Iо = 10-12 Вт/м2 – интенсивность звука, соответствующая порогу слышимости (на частоте 1000 Гц).

Величину уровня интенсивности  применяют при получении формул акустических расчётов, а уровня звукового  давления – для измерения шума и оценки его воздействия на человека, поскольку орган слуха чувствителен не к интенсивности, а к среднеквадратичному давлению.

Интенсивность Imax и величина звукового давления Pmax, соответствующие болевому порогу: Imax = 102 Вт/м, Pmax = 2×102 Па.

Частотный спектр шума – зависимость уровня интенсивности (уровня звукового давления) от частоты: L = L(ƒ). Весь слышимый диапазон частот разбит на 9 октавных полос. Октавная полоса, или октава – это частотный диапазон, для которого выполняется условие

.       (6.5)

Различаю следующие виды спектров:

-  дискретный (линейчатый) – спектр, синусоидальные составляющие которого отделены друг от друга по частоте (рис. 6.1);


 

 

 

 

 

  • Рис. 6.1. Дискретный спектр шума

 

  • сплошной – спектр, в котором составляющие следуют друг за другом непрерывно (рис. 6.2.);
  • смешанный – такой спектр, в котором дискретные составляющие присутствуют наряду с непрерывными (рис. 6.3).

 


 

 

 

 

  • Рис. 6.2. Сплошной (непрерывный) спектр

 

 

 

 

 

 

 

 

Рис. 6.3. Смешанный спектр шума

 

В зависимости от характера  спектра шумы бывают тональными (в спектре которых имеются слышимые дискретные тона) и широкополосными (со сплошным спектром шириной более одной октавы).

По временным характеристикам  различают:

  • постоянный шум – уровень звука изменяется за рабочий день не больше, чем на 5дБА;
  • непостоянный шум – уровень звука изменяется за рабочий день больше, чем на 5дБА.

Непостоянный  шум делится на колеблющийся во времени, прерывистый (длительность сигнала больше 1 c), импульсный (длительность сигнала меньше 1 с).

По частотным характеристикам различают:

– низкочастотный шум – с частотой до 400 Гц;

– среднечастотный шум – с частотой 400-1000 Гц;

– высокочастотный шум – с частотой от 1000 Гц.

По источнику возникновения  различают:

– механический шум – возникающий в результате движения отдельных деталей и узлов оборудования, приборов и аппаратов с неуравновешенными массами;

– аэродинамический шум – возникающий в результате нестационарных процессов в жидкостях или газах;

– электромагнитный шум – возникающий в результате воздействия переменных магнитных сил, которые приводят к колебанию деталей и узлов машин и аппаратов.

Действие шума на организм человека. Ухо человека не одинаково воспринимает звуки различной частоты. Слуховой аппарат человека проявляет наибольшую чувствительность на средних и высоких частотах (800-4000 Гц), а наименьшую – на низких (20-100 Гц). Поэтому звуки, одинаковые по звуковому давлению, но разные по частоте, могут казаться на слух неодинаково громкими.

Проявление вредного воздействия шума на человека весьма разнообразно.

Область слышимости ограничивается не только определёнными частотами (20-20 000 Гц), но и определёнными предельными значениями звуковых давлений и их уровней (рис. 6.4).


 

 

 

 

 

 

 

 

 

 

 

Рис. 6.4. Область слышимости: 1 – кривая, соответствующая порогу слышимости; 2 – кривая, соответствующая порогу болевого ощущения

 

Пороговое значение звукового  давления Ро соответствует порогу слышимости (L = 1 дБ) только на частоте 1000 Гц, принятой в качестве стандартной частоты сравнения в акустике.

Порог слышимости различен для звуков разной частоты. В диапазоне частот 800-4 000 Гц величина порога слышимости минимальна. При повышении и понижении частоты значение порога слышимости растёт, особенно это заметно на низких частотах. По этой причине низкочастотные звуки менее неприятны для человека, чем высокие (при одинаковых уровнях звукового давления).

Действие шума на человека зависит от уровня и характера  шума, его продолжительности, а также  от индивидуальных особенностей человека.

Длительное воздействие  шума на работающих может вызвать функциональные изменения со стороны ряда органов и систем. Шум вызывает нарушения со стороны высшей нервной деятельности (изменяется сила, уравновешенность и подвижность нервных процессов); сердечно-сосудистой системы (изменяется кровяное давление, ритм сердечных сокращений, повышается внутричерепное давление); органов пищеварения (учащаются заболевания гастритами, язвенная болезнь, отмечается понижение кислотности желудочного сока); ослабляется внимание, память, учащается раздражительность, снижается работоспособность и производительность труда.

Наряду с этим общим  воздействием особо неблагоприятное  воздействие оказывает шум на орган слуха, вследствие чего наступает  расстройство слуховой функции, которое  может привести к полной тугоухости.

Звуки очень большой силы, уровень которых превышает 120-130 дБ, вызывают большие ощущения и повреждения в слуховом аппарате (акустическая травма). В табл. 6.1 представлены уровни различных звуков.

 

Таблица 6.1

  • Уровни различных звуков в зависимости от источника шума и расстояния
  • Источник шума

    Расстояние, м

    Уровень шума, дБ

    Жилая комната

    Речь средней громкости

    Металлорежущие станки

    Дизельный грузовик

    Пневмоперфоратор

    Реактивный двигатель

    Выстрел из артиллерийс-кого орудия

    -

    1

    на рабочих местах

    7

    1

    25

     

    1-2

    35

    60

    80-96

    90

    100

    140

     

    160-170


     

    Наиболее глубокие сдвиги в организме вызывают высокочастотные, дискретные и импульсные шумы.

    Нормирование  шума на рабочих местах. Целью нормирования шумовых характеристик рабочих мест является установление научно обоснованных предельно допустимых величин шума, которые при ежедневном систематическом воздействии в течение всего стажа работы не вызывают заболеваний человека и не мешают его нормальной трудовой деятельности.

    Нормирование осуществляется по СН 2.2.4/2.1.8.562-96 и ГОСТ 12.1.003-83. При  нормировании используют два метода: нормирование по предельному спектру  шума и нормирование уровня звука  в дБА.

    Первый метод нормирования является основным для постоянных шумов. Весь частотный диапазон разбивается на 9 октав. Каждая октава имеет среднегеометрическую частоту:

    .      (6.6)

    Стандартные среднегеометрические частоты: 31,5; 63; 125; 250, 500, 1000, 2000, 4000, 8000 Гц. В октавных полосах нормируются уровни звуковых давлений.

    Совокупность девяти допустимых уровней звукового давления называется предельным спектром.

    С ростом частоты (что  приводит к более неприятному  шуму) допустимые уровни уменьшаются.

    Каждый из спектров имеет  свой индекс. Например: ПС-80 – число 80 обозначает допустимый уровень звукового давления в октавной полосе со среднегеометрической частотой 1000 Гц.

    Второй метод нормирования (нормирование по шкале А) применяют для ориентировочной оценки постоянного и непостоянного шума, или когда шумомер не оборудован октавными фильтрами.

    Уровень звука в дБА  определяют по так называемой шкале А шумомера с коррекцией, которая заключается в том, что вводятся поправки, учитывающие зависимость чувствительности слуха от частоты звука и приближающие результаты объективных измерений к субъективному восприятию.

    Шумомер оборудуется  фильтром, создающим завал чувствительности на низких и высоких частотах, чем  имитируется характеристика человеческого  уха.

    Достоинство этого метода в том, что требуется только один замер, в то время как по первому методу надо сделать девять замеров.

    Уровень звука, дБА, связан с предельным спектром зависимостью:

           (6.7)

    Нормированным параметром непостоянного шума является эквивалентный уровень звука – такое значение уровня звука длительного непостоянного шума, который в пределах определённого времени имеет то же самое значение уровня звука, что и рассматриваемый шум, уровень звука которого изменяется во времени:

         (6.8)

    где ti – доля времени воздействия шума класса Li; Li – уровень звука класса i, дБА.

     

    6.2. Ультразвук

     

    Ультразвук – упругие колебания и волны, частота которых лежит в диапазоне 16-100 кГц. Ультразвуковые волны по своей природе не отличаются от упругих волн слышимого диапазона и характеризуются теми же параметрами: интенсивностью (Вт/м2), звуковым давлением (Па), звуковой мощностью (Вт) и их уровнями (дБ).

    Тем не менее, ультразвуковые колебания обладают специфическими особенностями, которые обусловлены высокой частотой и соответственно малой длиной волн. Ультразвуковые волны имеют лучевой характер распространения. Поэтому при одинаковой звуковой мощности источника шума и ультразвука интенсивность последнего будет значительно выше.

    Науке об ультразвуке принадлежит большое будущее. Но уже сегодня технические задачи, решаемые при помощи высоких звуковых колебаний, очень разнообразны. Это пайка алюминия, стирка белья, обработка сложных контуров деталей, сварка фольги, устранение тумана над аэродромами, получение суспензий лекарственных веществ и многое другое. При помощи ультразвука можно просверлить самые сверхтвердые сплавы и драгоценные камни, включая алмаз.

    Дозированные ультразвуковые колебания обладают хорошими терапевтическими свойствами, используются в физиолечении, в медицинской диагностической практике, с помощью ультразвука лечат заболевания периферической нервной системы, ускоряют процессы рассасывания гнойников и рубцов.

    Ультразвуковые установки  применяются для очистки и  обезжиривания деталей при ремонте часов, для механической обработки твердых и хрупких материалов в ювелирном производстве (сварка, пайка, лужение и т. п.), для соединений искусственной кожи, натуральной ткани с синтетической и пр.

    В технологических целях  используются ультразвуковые колебания низкой частоты (18-44 кГц) и большой интенсивности (67 Вт/см2).

    Уровни звукового давления на рабочих местах в зависимости  от вида установки колеблются от 80 до 120 дБ.

    <p class="dash0411_0430_0437_043e_0432_044b_0439" style=" margin-left: 0pt; margin-right: 0pt; tex

    Информация о работе Лекции по "БЖД"