Динамика научного познания

Автор работы: Пользователь скрыл имя, 23 Апреля 2012 в 23:02, реферат

Описание

Взаимодействие картины мира и опытных фактов может реализовываться в двух вариантах. Во-первых, на этапе становления новой области научного знания (научной дисциплины) и, во-вторых, в теоретически развитых дисциплинах при эмпирическом обнаружении и исследовании принципиально новых явлений, которые не вписываются в уже имеющиеся теории.

Работа состоит из  1 файл

динамика научного познания.docx

— 32.17 Кб (Скачать документ)

     Исходную  программу теоретического синтеза  задавали принятые исследователем идеалы познания и картина мира, которая  определяла постановку задач и выбор  средств их решения.

     В процессе создания максвелловской электродинамики  творческий поиск целенаправляли, с  одной стороны, сложившиеся в  науке идеалы и нормы, которым  должна была удовлетворять создаваемая  теория (идеал объяснения различных  явлений с помощью небольшого числа фундаментальных законов, идеал организации теории как  дедуктивной системы, в которой  законы формулируются на языке математики). С другой стороны, принятая Максвеллом фарадеевская картина физической реальности, которая задавала единую точку зрения на весьма разнородный теоретический материал, подлежащий синтезу и обобщению. Эта картина ставила задачу - объяснить все явления электричества и магнетизма как передачу электрических и магнитных сил от точки к точке в соответствии с принципом близкодействия.

     Вместе  с постановкой основной задачи она  очерчивала круг теоретических средств, обеспечивающих решение задачи. Такими средствами послужили аналоговые модели и математические структуры механики сплошных сред. Фарадеевская картина  мира обнаруживала сходство между передачей  сил в этих качественно различных  типах физических процессов и  тем самым создавала основу для  переброски соответствующих математических структур из механики сплошных сред в  электродинамику. Показательно, что  альтернативное максвелловскому направление  исследований, связанное с именами  Ампера и Вебера, исходило из иной картины  мира при поиске обобщающей теории электромагнетизма. В соответствии с этой картиной использовались иные средства построения теории (аналоговые модели и математические структуры заимствовались из ньютоновской механики материальных точек).

     Синтез, предпринятый Максвеллом, был основан  на использовании уже известной  нам операции применения аналоговых моделей. Эти модели заимствовались из механики сплошных сред и служили  средством для переноса соответствующих  гидродинамических уравнений в  создаваемую теорию электромагнитного  поля. Применение аналогий является универсальной  операцией построения новой теории как при формировании частных  теоретических схем, так и при  их обобщении в развитую теорию. Научные теории не являются изолированными друг от друга, они развиваются как  система, где одни теории поставляют для других строительный материал.

     Аналоговые  модели, которые использовал Максвелл - трубки тока несжимаемой жидкости, вихри в упругой среде, - были теоретическими схемами механики сплошных сред.

     Когда связанные с ними уравнения транслировались  в электродинамику, механические величины замещались в уравнениях новыми величинами. Такое замещение было возможным  благодаря подстановке в аналоговую модель вместо абстрактных объектов механики новых объектов - силовых  линий, зарядов, дифференциально малых  элементов тока и т.д. Эти объекты  Максвелл заимствовал из теоретических  схем Кулона, Фарадея, Ампера, схем, которые  он обобщал в создаваемой им новой  теории. Подстановка в аналоговую модель новых объектов не всегда осознается исследователем, но она осуществляется обязательно. Без этого уравнения  не будут иметь нового физического  смысла и их нельзя применять в  новой области.

     Эта подстановка означает, что абстрактные объекты, транслированные из одной системы знаний (в нашем примере из системы знаний об электричестве и магнетизме) соединяются с новой структурой ("сеткой отношений"), заимствованной из другой системы знаний (в данном случае из механики сплошных сред). В результате такого соединения происходит трансформация аналоговой модели. Она превращается в теоретическую схему новой области явлений, схему на первых порах гипотетическую, требующую своего конструктивного обоснования. 
 
 

  1. Особенности построения развитых, математизированных теорий в современной  науке

     С развитием науки меняется стратегия  теоретического поиска. В частности, в современной физике теория создается  иными путями, чем в классической. Построение современных физических теорий осуществляется методом математической гипотезы. В отличие от классических образцов, в современной физике построение теории начинается с формирования ее математического аппарата, а адекватная теоретическая схема, обеспечивающая его интерпретацию, создается уже  после построения этого аппарата. Новый метод выдвигает ряд  специфических проблем, связанных  с процессом формирования математических гипотез и процедурами их обоснования.

     Первый  аспект этих проблем связан с поиском  исходных оснований для выдвижения гипотезы. В классической физике основную роль в процессе выдвижения гипотезы играла картина мира. По мере формирования развитых теорий она получала опытное  обоснование не только через непосредственное взаимодействие с экспериментом, но и косвенно, через аккумуляцию  экспериментальных фактов в теории. И когда физические картины мира представали в форме развитых и обоснованных опытом построений, они задавали такое видение исследуемой  реальности, которое вводилось коррелятивно к определенному типу экспериментально-измерительной  деятельности. Эта деятельность всегда была основана на определенных допущениях, в которых неявно выражались как  особенности исследуемого объекта, так и предельно обобщенная схема  деятельности, посредством которой  осваивается объект.

     В физике эта схема деятельности выражалась в представлениях о том, что следует  учитывать в измерениях и какими взаимодействиями измеряемых объектов с приборами можно пренебречь. Указанные допущения лежат в  основании абстрактной схемы  измерения, которая соответствует  идеалам научного исследования и  коррелятивно которой вводятся развитые формы физической картины мира.

     При столкновении с новым типом объектов, структура которых не учтена в  сложившейся картине мира, познание меняло эту картину. В классической физике такие изменения осуществлялись в форме введения новых онтологических представлений. Однако последние не сопровождались анализом абстрактной  схемы измерения, которая составляет операциональную основу вводимых онтологических структур. Поэтому каждая новая картина  физической реальности проходила длительное обоснование опытом и конкретными  теориями, прежде чем получала статус картины мира. Современная физика дала образцы иного пути построения знаний. Она строит картину физической реальности, эксплицируя схему измерения, в рамках которой будут описываться новые объекты. Эта экспликация осуществляется в форме выдвижения принципов, фиксирующих особенности метода исследования объектов (принцип относительности, принцип дополнительности).

     Сама  картина на первых порах может  не иметь законченной формы, но вместе с принципами, фиксирующими "операциональную  сторону" видения реальности, она  определяет поиск математических гипотез. Новая стратегия теоретического поиска сместила акценты и в философской  регуляции процесса научного открытия. В отличие от классических ситуаций, где выдвижение физической картины  мира прежде всего было ориентировано "философской онтологией", в  квантово-релятивистской физике центр  тяжести был перенесен на гносеологическую проблематику. Поэтому в регулятивных принципах, целенаправляющих поиск  математических гипотез, явно представлены (в конкретизированной применительно  к физическому исследованию форме) положения теоретико-познавательного  характера (принцип соответствия, простоты и т.д.).

     В ходе математической экстраполяции  исследователь создает новый  аппарат путем перестройки некоторых  уже известных уравнений. Физические величины, входящие в такие уравнения, переносятся в новый аппарат, где получают новые связи, а значит, и новые определения. Соответственно этому заимствуются из уже сложившихся  областей знания абстрактные объекты, признаки которых были представлены физическими величинами. Абстрактные  объекты погружаются в новые  отношения, благодаря чему наделяются новыми признаками. Из этих объектов создается  гипотетическая модель, которая неявно вводится вместе с новым математическим аппаратом в качестве его интерпретации.

     Такая модель, как правило, содержит неконструктивные элементы, а это может привести к противоречиям в теории и  к рассогласованию с опытом даже перспективных математических аппаратов.

     Таким образом, специфика современных  исследований состоит не в том, что  математический аппарат сначала  вводится без интерпретации (неинтерпретированный аппарат есть исчисление, математический формализм, который принадлежит  математике, но не является аппаратом  физики). Специфика заключается в  том, что математическая гипотеза чаще всего неявно формирует неадекватную интерпретацию создаваемого аппарата, а это значительно усложняет  процедуру эмпирической проверки выдвинутой гипотезы. Сопоставление следствий из уравнений с опытом всегда предполагает интерпретацию величин, которые фигурируют в уравнениях. Поэтому опытом проверяются не уравнения сами по себе, а система: уравнения плюс интерпретация. И если последняя неадекватна, то опыт может выбраковывать вместе с интерпретацией весьма продуктивные математические структуры, соответствующие особенностям исследуемых объектов.

     Чтобы обосновать математическую гипотезу опытом, недостаточно просто сравнивать следствия  из уравнений с опытными данными. Необходимо каждый раз эксплицировать гипотетические модели, которые были введены на стадии математической экстраполяции, отделяя их от уравнений, обосновывать эти модели конструктивно, вновь  сверять с созданным математическим формализмом и только после этого  проверять следствия из уравнений  опытом.

     Длинная серия математических гипотез порождает  опасность накопления в теории неконструктивных элементов и утраты эмпирического  смысла величин, фигурирующих в уравнениях. Поэтому в современной физике на определенном этапе развития теории становятся необходимыми промежуточные  интерпретации, обеспечивающие операциональный  контроль за создаваемой теоретической  конструкцией. В системе таких  промежуточных интерпретаций как  раз и создается конструктивнообоснованная  теоретическая схема, обеспечивающая адекватную семантику аппарата и  его связь с опытом.

     Таким образом, эволюция физики сохраняет  на современном этапе некоторые  основные операции построения теории, присущие ее прошлым формам (классической физике). Но наука развивает эти  операции, частично видоизменяя их, а частично воспроизводя в новых  условиях некоторые черты построения математического аппарата и теоретических  моделей, свойственные классическим образцам.

     Процесс формирования теоретического знания осуществляется на различных стадиях эволюции науки  различными способами и методами, но каждая новая ситуация теоретического поиска не просто устраняет ранее  сложившиеся приемы и операции формирования теории, а включает их в более  сложную систему приемов и  методов.


Информация о работе Динамика научного познания