Искусственный интеллект

Автор работы: Пользователь скрыл имя, 01 Июня 2011 в 14:40, реферат

Описание

Цель работы- узнать об основных проблемах создания искусственного интеллекта, основных путей его создания. Задачи данной работы- рассмотреть искусственный интеллект с философской точки зрения, с точки зрения психологии. Изучить историю создания искусственного интеллекта, и методы его создания.

Содержание

Введение стр.2
1.Философские аспекты проблемы систем ИИ, теоретические проблемы психологии стр.3
2.История развития систем ИИ стр.8
3. Феномен мышления стр.11
4.Создание ИИ стр.13
4.1 Механический подход стр.13
4.2 Электронный подход стр.14
4.3 Кибернетический подход стр.15
4.4 Нейронный подход стр.16
4.5 Появление перцептрона стр.17
Заключение стр.19
Список литературы стр.20

Работа состоит из  1 файл

курсач.doc

— 162.50 Кб (Скачать документ)

 Успехи механики  XIX в.  стимулировали еще более честолюбивые замыслы.  Так,  в 1830-х годах английский математик Чарльз Бэббидж задумал,  правда, так и не завершив, сложный цифровой калькулятор, который он назвал Аналитической машиной;  как утверждал Бэббидж,  его машина в принципе могла бы рассчитывать шахматные ходы. Позднее, в 1914 г., директор  одного  из  испанских  технических  институтов  Леонардо  Торрес-и-Кеведо  действительно изготовил электромеханическое устройство, способное разыгрывать простейшие шахматные эндшпили почти также  хорошо, как и человек. 
 

4.2 Электронный подход    

 Однако только  после  второй  мировой войны появились устройства, казалось бы,  подходящие для достижения заветной цели -  моделирования разумного поведения;  это были электронные цифровые вычислительные машины. "Электронный мозг",  как тогда восторженно  называли  компьютер, поразил в 1952 г. телезрителей США, точно предсказав результаты президентских выборов за несколько часов до получения окончательных данных. Этот "подвиг" компьютера лишь подтвердил вывод,  к которому в то время пришли многие ученые:  наступит тот день, когда автоматические вычислители, столь быстро, неутомимо и безошибочно выполняющие автоматические действия, смогут имитировать невычислительные  процессы,  свойственные человеческому мышлению, в том числе восприятие и обучение, распознавание образов,  понимание повседневной речи и письма, принятие решений в неопределенных ситуациях,  когда известны не все факты.  Таким образом "заочно" формулировался своего рода "социальный заказ" для психологии, стимулируя различные отрасли науки. [2]

 Многие изобретатели  компьютеров и первые  программисты  развлекались составляя программы для отнюдь не технических занятий,  как сочинение музыки, решение головоломок и игры, на первом месте здесь оказались шашки и шахматы.  Некоторые романтически настроенные программисты даже заставляли свои машины писать любовные письма.    

 К концу  50-х годов все эти увлечения  выделились в новую более или  менее самостоятельную ветвь информатики,  получившую название "искусственный интеллект".  Исследования в области ИИ, первоначально сосредоточенные в нескольких университетских  центрах  США  -  Массачусетском технологическом  институте,  Технологическом институте Карнеги в Питтсбурге,  Станфордском университете,  - ныне ведутся во  многих  других университетах и корпорациях США и других стран. В общем исследователей ИИ,  работающих над созданием мыслящих машин,  можно разделить на  две группы.  Одних интересует чистая наука и для них компьютер - лишь инструмент,  обеспечивающий возможность экспериментальной проверки теорий процессов  мышления.  Интересы  другой группы лежат в области техники: они стремятся расширить сферу применения компьютеров и облегчить пользование ими. Многие представители второй группы мало заботятся о выяснении механизма мышления - они полагают, что для их работы это едва ли более полезно, чем изучение полета птиц и самолетостроения.     

 В настоящее  время,  однако,  обнаружилось,  что как научные так и технические поиски столкнулись с несоизмеримо более серьезными трудностями, чем представлялось первым энтузиастам.  На первых порах  многие пионеры ИИ  верили,  что  через какой-нибудь десяток лет машины обретут высочайшие человеческие таланты. Предполагалось, что преодолев период "электронного  детства"  и обучившись в библиотеках всего мира, хитроумные компьютеры, благодаря быстродействию точности и безотказной памяти постепенно превзойдут своих создателей-людей.  Сейчас мало кто говорит об этом,  а если и говорит, то отнюдь не считает, что подобные чудеса не за горами.    

 На протяжении  всей своей короткой истории  исследователи в области ИИ  всегда находились на переднем  крае информатики. Многие ныне  обычные разработки,  в том числе усовершенствованные системы программирования, текстовые  редакторы и программы распознавания образов,  в значительной мере рассматриваются на работах по ИИ.  Короче говоря,  теории,  новые идеи, и разработки ИИ неизменно привлекают внимание тех, кто стремится расширить области применения и возможности компьютеров, сделать их более "дружелюбными" то есть более похожими на разумных помощников и активных советчиков,  чем те «педантичные и туповатые  электронные  рабы, какими они всегда были.» [5]    

 Несмотря  на многообещающие перспективы,  ни одну из разработанных до  сих  пор программ ИИ нельзя назвать "разумной" в обычном понимании этого слова.  Это объясняется тем,  что все они узко специализированы; самые  сложные экспертные системы по своим возможностям скорее напоминают дрессированных или механических кукол, нежели человека с его гибким  умом  и  широким кругозором.  Даже среди исследователей ИИ теперь многие сомневаются,  что большинство подобных изделий принесет существенную пользу. Немало критиков ИИ считают, что такого рода ограничения вообще непреодолимы.     

 К числу  таких скептиков относится и  Хьюберт  Дрейфус,  профессор философии Калифорнийского  университета в Беркли.  С его точки зрения, истинный разум невозможно отделить от его человеческой основы,  заключенной в человеческом организме.  "Цифровой компьютер - не человек,  говорит Дрейфус.  - У компьютера нет ни тела, ни эмоций, ни потребностей. Он  лишен  социальной ориентации,  которая приобретается жизнью в обществе, а именно она делает поведение разумным.  Я не хочу  сказать, что компьютеры не могут быть разумными.  Но цифровые компьютеры,  запрограммированные фактами и правилами из  нашей,  человеческой,  жизни, действительно не могут стать разумными.  Поэтому ИИ в том виде, как мы его представляем,  невозможен".(1) 
 

4.3 Кибернетический подход    

 Попытки построить  машины, способные к разумному  поведению, в значительной мере вдохновлены идеями профессора МТИ Норберта Винера,  одной из выдающихся личностей в интеллектуальной истории Америки.  Помимо математики  он обладал широкими познаниями в других областях,  включая нейропсихологию, медицину, физику и электронику.    

 Винер был  убежден, что наиболее перспективны  научные исследования в так  называемых пограничных областях, которые нельзя конкретно отнести к той или иной конкретной дисциплины. Они лежат где-то на стыке наук, поэтому к ним обычно не подходят столь строго. "Если затруднения в решении какой-либо  проблемы психологии имеют математический характер, пояснял он, - то десять несведущих в математике психологов продвинуться не дальше одного столь же несведущего".     

 Винеру и  его сотруднику Джулиану Бигелоу  принадлежит  разработка принципа "обратной связи", который был успешно применен при разработке нового оружия с радиолокационным наведением.  Принцип  обратной  связи заключается в использовании информации, поступающей из окружающего мира, для изменения поведения машины.  В основу разработанных Винером  и Бигелоу систем  наведения  были положены тонкие математические методы; при малейшем изменении отраженных от самолета радиолокационных  сигналов они соответственно изменяли наводку орудий,  то есть - заметив попытку отклонения самолета от курса,  они тотчас расчитывали его  дальнейший путь и направляли орудия так, чтобы траектории снарядов и самолетов пересеклись. [5]    

 В дальнейшем  Винер разработал на принципе  обратной  связи  теории как  машинного,  так и человеческого разума.  Он доказывал,  что именно благодаря обратной связи все живое приспосабливается к окружающей среде  и  добивается  своих целей.  "Все машины,  претендующие на "разумность",- писал он,  - должны обладать способностью преследовать определенные цели и приспосабливаться,  т.е.  обучаться". Созданной им науке Винер дает название кибернетика,  что в переводе с греческого означает рулевой.     

 Следует отметить, что принцип "обратной связи", введенный Винером был в  какой-то  степени предугадан Сеченовым в явлении "центрального торможения" в "Рефлексах головного мозга" (1863 г.)  и  рассматривался как механизм  регуляции деятельности нервной системы,  и который лег в основу многих моделей произвольного поведения в отечественной психологии. 
 

4.4 Нейронный подход    

 К этому  времени и другие ученые стали  понимать,  что  создателям вычислительных машин  есть  чему  поучиться у биологии.  Среди них был нейрофизиолог и поэт-любитель Уоррен Маккалох,  обладавший как и Винер философским складом ума и широким кругом интересов.  В 1942 г.  Маккалох, участвуя в научной конференции в Нью-йорке, услышал доклад одного из сотрудников  Винера о механизмах обратной связи в биологии.  Высказанные в докладе идеи перекликались с  собственными  идеями  Маккалоха относительно работы головного мозга.  В течении следующего года Маккалох в соавторстве со своим 18-летним  протеже,  блестящим  математиком Уолтером Питтсом,  разработал теорию деятельности головного мозга. Эта теория и являлась той основой,  на которой сформировалось широко распространенное мнение, что функции компьютера и мозга в значительной мере сходны.    

 Исходя отчасти из предшествующих исследований нейронов  (основных активных клеток,  составляющих нервную систему животных),  проведенных Маккаллохом, они с Питтсом выдвинули гипотезу, что нейроны можно упрощенно  рассматривать  как  устройства,  оперирующие двоичными числами. Двоичные числа, состоящие из цифр единица и нуль, - рабочий инструмент одной  из  систем  математической  логики.  Английский математик XIXв. Джордж Буль,  предложивший эту остроумную систему,  показал, что логические утверждения можно закодировать в виде единиц и нулей,  где единица соответствует истинному высказыванию, а нуль - ложному, после чего этим можно оперировать как обычными числами. В 30-е годы XX в. пионеры информатики,  в особенности американский ученый Клод Шеннон, поняли, что двоичные единица и нуль вполне соответствуют двум состояниям электрической цепи (включено-выключено), поэтому двоичная система идеально  подходит  для  электронно-вычислительных устройств.  Маккалох и Питтс предложили конструкцию сети из электронных "нейронов" и  показали,  что  подобная  сеть может выполнять практически любые вообразимые числовые или логические операции.  Далее они предположили,  что  такая сеть в состоянии также обучаться,  распознавать образы, обобщать, т.е. она обладает всеми чертами интеллекта.    

 Теории Маккаллоха-Питтса  в сочетании с книгами Винера  вызвали огромный интерес к  разумным машинам.  В 40-60-е годы все больше кибернетиков  из  университетов  и частных фирм запирались в лабораториях и мастерских,  напряженно работая над теорией функционирования  мозга  и методично припаивая электронные компоненты моделей нейронов.    

 Из этого  кибернетического,  или нейромодельного, подхода к машинному  разуму  скоро  сформировался так называемый "восходящий метод" движение от простых аналогов нервной системы примитивных существ,  обладающих малым числом нейронов,  к сложнейшей нервной системе человека и даже выше. Конечная цель виделась в создании "адаптивной сети", "самоорганизующейся  системы" или "обучающейся машины" - все эти названия разные исследователи использовали для обозначения устройств, способных следить  за окружающей обстановкой и с помощью обратной связи изменять свое поведение в полном соответствии с господствовавшей в  те  времена бихевиористской  школой психологии,  т.е.  вести себя так же как живые организмы. [2]Однако отнюдь не во всех случаях возможна аналогия с живыми организмами.  Как  однажды  заметили  Уоррен Маккаллох и его сотрудник Майкл Арбиб,  "если по весне вам захотелось обзавестись  возлюбленной, не стоит брать амебу и ждать пока она эволюционирует".     

 Но дело  здесь не только во времени.  Основной трудностью, с которой  столкнулся "восходящий метод" на заре своего существования,  была высокая стоимость электронных элементов.  Слишком дорогой  оказывалась даже модель нервной системы муравья, состоящая из 20 тыс. нейронов, не говоря уже о нервной системе человека, включающей около 100 млрд. нейронов.  Даже  самые  совершенные кибернетические модели содержали лишь неколько сотен нейронов.  Столь ограниченные возможности  обескуражили многих исследователей того периода. 
 

4.5 Появление перцептрона    

 Одним из  тех, кого ничуть не испугали  трудности был Фрэнк Розенблат, труды  которого казалось отвечали самым заметным устремлениям кибернетиков. В середине 1958 г.  им была предложена модель электронного устройства, названного им перцептроном,  которое должно было бы имитировать процессы человеческого мышления.  Перцептрон должен был передавать сигналы  от  "глаза",  составленного  из  фотоэлементов,  в блоки электромеханических ячеек памяти,  которые оценивали относительную величину электрических сигналов. Эти ячейки соединялись между собой случайным образом в соответствии с господствующей тогда теорией, согласно которой мозг  воспринимает  новую  информацию и реагирует на нее через систему случайных связей между нейронами. [6]  Два года спустя была продемонстрирована первая  действующая машина "Марк-1",  которая могла научится распознавать некоторые из букв, написанных на карточках, которые подносили к его "глазам",  напоминающие кинокамеры. Перцептрон Розенблата оказался наивысшим достижением "восходящего", или нейромодельного метода создания  искусственого  интеллекта.  Чтобы  научить перцептрон способности строить догадки на основе исходных предпосылок, в нем предусматривалась некая  элементарная разновидность автономной работы или "самопрограммирования". При распознании той или  иной  буквы  одни  ее элементы или  группы элементов оказываются гораздо более существеными, чем другие.  Перцептрон мог научаться выделять такие характерные  особенности буквы  полуавтоматически,  своего рода методом проб и ошибок, напоминающим процесс обучения. Однако возможности перцептрона были ограниченными: машина  не  могла  надежно распознавать частично закрытые буквы, а также буквы иного размера или рисунка, нежели те, которые использовались на этапе ее обучения.     

Информация о работе Искусственный интеллект