Автор работы: Пользователь скрыл имя, 26 Февраля 2013 в 19:07, курсовая работа
В настоящее время азотная промышленность в качестве сырья использует природный газ (технология получения аммиака из природного газа широко внедряется). Это позволит обеспечить наиболее рациональное размещение промышленности азотных удобрений по территории страны, приблизить производство к районам потребления, использовать местные виды сырья, топлива и дешевой энергии.
ВВЕДЕНИЕ
1. Виды коррозионных и коррозионно-механических разрушений, конструкционных материалов 5
1.1 Анализ агрессивной среды производства данной отрасли 8
1.2 Характерные виды коррозии и износа 10
1.3 Факторы ускоряющие коррозию и износ 14
1.4 Выводы 17
2. Разработка антикоррозионной защиты оборудования данной отрасли 18
2.1 Виды коррозионностойких материалов 21
2.2 Выбор химическо-стойких неметаллических материалов 23
2.3 Выбор модификаторов коррозии 27
2.4 Выбор ремонтно-реставрационных материалов 29
2.5 Выбор антикоррозионных покрытий (металлополимерные, полимерные и
и стеклоэмалевые) 30
2.6 Выбор износостойких материалов и покрытий 33
2.7 Выбор специальных покрытий в данной отрасли 36
2.8 Применение технологии укрепления поверхностей 38
2.9 Разработка химико-технологических методов снижения коррозии и
износа 42
2.10 Разработка организационно-технических методов снижения коррозии 42
2.11 Разработка вариантов рационального конструирования 43
2.12 Выбор эффективных ингибиторов коррозии 48
2.13 Разработка вариантов электро-химической защиты оборудования 51
2.14 Выводы 53
3. Выводы. Производственные рекомендации по повышению
эксплуатационной надежности 55
ЛИТЕРАТУРА
Оборудование предприятий, где протекает азот подвержено общей питтинговой, межкристаллитной коррозии и коррозионному растрескиванию. Из статистики отказов машин и аппаратов следует, что 31,5% разрушений вызвано общей коррозией, по причине коррозионного растрескивания – 21,6%, на долю питтинговой и межкристаллитной приходится 15,7% и 10,2%. Процессы коррозии приносят колоссальные убытки: США ежегодно расходует до 40% производимого металла, СНГ – 25 млн. т. сталей и сплавов.
Поверхности деталей, находящиеся в непосредственном контакте с газообразными и жидкими агрессивными средами различного состава, при различных температуре и скорости относительного движения, и коррозионной активностью изнашиваются весьма интенсивно.
Одновременно с коррозионным воздействием среды поверхность многих деталей подвергается локальным механическим нагрузкам, возникающим при трении и других видах взаимодействия сопрягаемых поверхностей, износу твердыми абразивными частицами, динамическому воздействию потока жидкости и т.п. Все это приводит к преждевременному выходу оборудования из строя вследствие интенсивного развития процессов коррозии и изнашивания рабочих поверхностей.
Необходимое условие для обеспечения требуемой длительности межремонтной эксплуатации оборудования — правильный выбор конструкционных материалов. Эти материалы должны обладать, прежде всего, достаточно высокой стойкостью против коррозии и изнашивания в агрессивных средах (ГОСТ 5272-68 и ГОСТ 23002-87).
Реальный путь повышения работоспособности оборудования — защита металлов от коррозии с помощью антикоррозионных покрытий. Достигнутые успехи в этой области хотя и бесспорны, однако те потери металлов, которые все еще имеются, заставляют искать новые, более эффективные пути борьбы с разрушениями. Поиск их связан с глубоким изучением факторов, определяющих интенсивность развития коррозионных процессов, и разработкой новых способов нанесения коррозионностойких, износостойких и антифрикционных покрытий.
1.1 Анализ агрессивной среды производства данной отрасли
Металлические конструкции азотной промышленности, работающие в условиях одновременного воздействия агрессивных сред и механических напряжений, подвергаются более сильному разрушению.
В химической промышленности можно найти многочисленные примеры совместного влияния этих двух факторов.
Процессы синтеза аммиака, мочевины, метилового спирта протекают в агрессивных средах, в условиях повышенных температур при движении газового потока под давлением 35-40 МПа.
Вибрационные сита, грохоты, фильтры работают в условиях коррозионно-активной среды и механических нагрузок.
Коррозионному растрескиванию подвержены выпарные аппараты, трубопроводы, автоклавы и др. аппараты.
Не менее опасное разрушение
металла имеет место при
Различают два вида механических напряжений — внутренние и внешние. Внутренние напряжения возникают при термической и механической обработке деталей, при сварке. Внешние, приложенные извне напряжения, могут быть статическими и переменными.
Под влиянием механических напряжений меняется структура поверхностного слоя металла, что может вызвать изменение потенциала на его отдельных участках, разрушение защитных пленок, и как следствие этого — изменение скорости коррозии.
Различают следующие виды коррозионного разрушения металла под воздействием механических нагрузок:
Коррозионные разрушения
не относятся к процессам
Коррозионные процессы, при механических нагрузках протекающие через три последовательные стадии: инкубационный период, отвечающий отсутствию видимых разрушений; период образования очагов коррозии; период быстрого масштабного разрушения.
Наличие механических напряжений
в металле, лежащих в упругой
области или связанных с
Протекание коррозионного
1.2 Характерные виды коррозии и износа
1. По виду (геометрическому характеру) коррозионных разрушений на поверхности или в объёме металла.
Коррозия, захватившая всю поверхность металла, называется сплошной. Сплошную коррозию делят на равномерную и неравномерную в зависимости от того, одинакова ли глубина коррозионного разрушения на разных участках. При местной коррозии поражения локальны и оставляют практически незатронутой значительную (иногда подавляющую) часть поверхности. В зависимости от степени локализации различают коррозионные пятна, язвы и точки (питтинг). Точечные поражения могут дать начало подповерхностной коррозии. распространяющейся в стороны под очень тонким (например, наклёпанным) слоем металла, который затем вздувается пузырями или шелушится. Наиболее опасные виды местной коррозии — межкристаллитная (интеркристаллитная), которая, не разрушая зёрен металла, продвигается вглубь по их менее стойким границам, и транскристаллитная, рассекающая металл трещиной прямо через зёрна. Почти не оставляя видимых следов на поверхности, эти поражения могут приводить к полной потере прочности и разрушению детали или конструкции. Близка к ним по характеру ножевая коррозия, словно ножом разрезающая металл вдоль сварного шва при эксплуатации некоторых сплавов в особо агрессивных растворах. Иногда специально выделяют поверхностную нитевидную коррозию, развивающуюся, например, под неметаллическими покрытиями, и послойную коррозию, идущую преимущественно в направлении пластической деформации. Специфична избирательная коррозия, при которой в сплаве могут избирательно растворяться даже отдельные компоненты твёрдых растворов (например, обесцинкование латуни).
2. По механизму реакций взаимодействия металла со средой (химическая и электрохимическая коррозия).
Коррозия является химической, если после разрыва металлической связи атомы металла непосредственно соединяются химической связью с теми атомами или группами атомов, которые входят в состав окислителей, отнимающих валентные электроны металла. Химическая коррозия возможна в любой коррозионной среде, однако чаще всего она наблюдается в тех случаях, когда коррозионная среда не является электролитом (газовая коррозия, коррозия в неэлектропроводных органических жидкостях). Скорость её чаще всего определяется диффузией частиц металла и окислителя через поверхностную плёнку продуктов коррозии (высокотемпературное окисление большинства металлов газами), иногда — растворением или испарением этой плёнки (высокотемпературное окисление W или Mo), её растрескиванием (окисление Nb при высоких температурах) и изредка — конвективной доставкой окислителя из внешней среды (при очень малых его концентрациях).
Коррозия является электрохимической, если при выходе из металлической решётки образующийся катион вступает в связь не с окислителем, а с другими компонентами коррозионной среды; окислителю же передаются электроны, освобождающиеся при образовании катиона. Такой процесс возможен в тех случаях, когда в окружающей среде существуют два типа реагентов, из которых одни (сольватирующие или комплексообразующие) способны соединяться устойчивыми связями с катионом металла без участия его валентных электронов, а другие (окислители) могут присоединять валентные электроны металла, не удерживая около себя катионы. Подобными свойствами обладают растворы или расплавы электролитов, где сольватированные катионы сохраняют значительную подвижность. Таким образом, при электрохимической коррозии удаление атома из металлической решётки (что составляет суть любого коррозионного процесса) осуществляется в результате двух независимых, но сопряжённых, связанных между собой электрическим балансом, электрохимических процессов: анодного — переход сольватируемых катионов металла в раствор, и катодного — связывание окислителем освобождающихся электронов. Отсюда следует, что процесс электрохимической коррозии можно замедлить не только путём непосредственного торможения анодного процесса, но также воздействуя на скорость катодного. Наиболее распространены два катодных процесса: разряд водородных ионов (2е + 2H+ = H2) и восстановление растворённого кислорода (4e+O2+4H+ = 2H2O или 4e+O2+2H2O =4ОН-), которые часто называют соответственно водородной и кислородной деполяризацией.
Анодный и катодный процессы с той или иной вероятностью и в той или иной последовательности протекают в любых точках металлической поверхности, где катионы и электроны могут взаимодействовать с компонентами коррозионной среды. Если поверхность однородна, то катодные и анодные процессы равновероятны по всей её площади; в таком идеальном случае коррозию называют гомогенно-электрохимической (таким образом, отсутствие какой-либо неоднородности в распределении вероятности электрохимических процессов в любой точке поверхности, что, конечно, не исключает термодинамической гетерогенности взаимодействующих фаз). В действительности на металлических поверхностях существуют участки с различными условиями доставки реагирующих компонентов, с разным энергетическим состоянием атомов или с различными примесями. На таких участках возможно более энергичное протекание либо анодного, либо катодного процессов, и коррозия становится гетерогенно-электрохимической.
3. По типу коррозионной среды
Некоторые коррозионные среды и вызываемые ими разрушения столь характерны, что по названию этих сред классифицируются и протекающие в них коррозионные процессы.
Как правило, металлические изделия и конструкции подвергаются действию многих видов коррозии - в этих случаях говорят о действии так называемой смешанной коррозии.
Газовая коррозия – коррозия в газовой среде при высоких температурах.
Атмосферная коррозия – коррозия металла в условиях атмосферы при влажности, достаточной для образования на поверхности металла пленки электролита (особенно в присутствии агрессивных газов или аэрозолей кислот, солей и т.д.). Особенностью атмосферной коррозии является сильная зависимость ее скорости и механизма от толщины слоя влаги на поверхности металла или степени увлажнения образовавшихся продуктов коррозии.
Жидкостная коррозия – коррозия в жидких средах. По условиям воздействия жидкой среды на металл этот тип коррозии также характеризуется как коррозия при полном погружении, при неполном погружении, при переменном погружении, имеющие свои характерные особенности.
Подземная коррозия – коррозия металла в грунтах и почвах. Характерной особенностью подземной коррозии является большое различие в скорости доставки кислорода (основной деполяризатор) к поверхности подземных конструкций в разных почвах (в десятки тысяч раз).
4. По характеру дополнительных воздействий
Коррозия под напряжением
Утечка электрического тока через границу металла с агрессивной средой вызывает в зависимости от характера и направления утечки дополнительные анодные и катодные реакции, могущие прямо или косвенно вести к ускоренному местному или общему разрушению металла (коррозия блуждающим током). Сходные разрушения, локализуемые вблизи контакта, может вызвать соприкосновение в электролите двух разнородных металлов, образующих замкнутый гальванический элемент, — контактная коррозия. В узких зазорах между деталями, а также под отставшим покрытием или наростом, куда проникает электролит, но затруднён доступ кислорода, необходимого для пассивации металла, может развиваться щелевая коррозия, при которой растворение металла в основном происходит в щели, а катодные реакции частично или полностью протекают рядом с ней на открытой поверхности.