Автор работы: Пользователь скрыл имя, 26 Февраля 2013 в 19:07, курсовая работа
В настоящее время азотная промышленность в качестве сырья использует природный газ (технология получения аммиака из природного газа широко внедряется). Это позволит обеспечить наиболее рациональное размещение промышленности азотных удобрений по территории страны, приблизить производство к районам потребления, использовать местные виды сырья, топлива и дешевой энергии.
ВВЕДЕНИЕ
1. Виды коррозионных и коррозионно-механических разрушений, конструкционных материалов 5
1.1 Анализ агрессивной среды производства данной отрасли 8
1.2 Характерные виды коррозии и износа 10
1.3 Факторы ускоряющие коррозию и износ 14
1.4 Выводы 17
2. Разработка антикоррозионной защиты оборудования данной отрасли 18
2.1 Виды коррозионностойких материалов 21
2.2 Выбор химическо-стойких неметаллических материалов 23
2.3 Выбор модификаторов коррозии 27
2.4 Выбор ремонтно-реставрационных материалов 29
2.5 Выбор антикоррозионных покрытий (металлополимерные, полимерные и
и стеклоэмалевые) 30
2.6 Выбор износостойких материалов и покрытий 33
2.7 Выбор специальных покрытий в данной отрасли 36
2.8 Применение технологии укрепления поверхностей 38
2.9 Разработка химико-технологических методов снижения коррозии и
износа 42
2.10 Разработка организационно-технических методов снижения коррозии 42
2.11 Разработка вариантов рационального конструирования 43
2.12 Выбор эффективных ингибиторов коррозии 48
2.13 Разработка вариантов электро-химической защиты оборудования 51
2.14 Выводы 53
3. Выводы. Производственные рекомендации по повышению
эксплуатационной надежности 55
ЛИТЕРАТУРА
- менять толщину ламинарного слоя в зависимости от нагруженности изделия в том или ином месте конструкции;
- комбинировать слои ламината, используя различные виды связующего и типы наполнителей.
Кроме того, введением специальных добавок в поверхностный слой ламината мы можем делать покрытие со специальным свойствами - антиадгезионные, износостойкие, термостойкие и т.д.
Технологичность выполнения футеровочных работ стеклопластиком подчеркивается возможностью выбора, в зависимости от конфигурации объекта, его размеров, отведенными сроками на проведение работ, квалификацией рабочих и т.д. - различными способами проведения футеровки:
- листовыми химстойкими стеклопластиками;
- ручным ламинированием непосредственно на объекте;
- применением распылителей типа "аппликаторы", наносящих одновременно связующее и армируемый материал;
- применением технологии "стакан в стакане", когда в изделие вставляется заранее сформированное из композита подобное изделие.
Трудоемкость выполнения футеровочных работ химстокими стеклопластиками одна из самых низких из рассматриваемых видов пластиков, не требует привлечения сложных машин и механизмов (кроме аппликатора) однако требует определенной квалификации рабочих и четкого соблюдения регламента (при "мокром" ламинировании). И, наконец, рассматривая эксплутационные характеристики различного вида футеровочных пластиков, следует отметить несомненные преимущества стеклопластиков по следующим причинам:
- высокая ударовибропрочность, позволяющая воспринимать динамические нагрузки, возникающие в процессе эксплуатации изделия;
- большой диапазон рабочих температур, уступающий только фторопластам, однако известны случаи кратковременных тепловых ударов до +300°С без потери защитных свойств; ремонтопригодность стеклопластиков позволяющая восстанавливать поврежденные участки, без демонтажа всего покрытия;
- достаточно высокая прочность и химстойкость стеклопластиков позволяет во многих случаях отказаться от применения специальных химстойких материалов (нержавеющая сталь, титан и т.д.) и уменьшить массу конструкции за счет уменьшения толщины подложки (каркаса) изделия.
- органические смолы, являющиеся связующим в стеклопластиках, обладают отличной совместимостью с большинством химстойких лакокрасочных материалов и другими типами защитных материалов, например резинами, что позволяет проводить комплексную защиту технологического оборудования с применением разных видов защитных систем, материалов, технологий и т.п., в зависимости от условий эксплуатации, требуемого уровня защиты, профессиональной подготовки рабочих, и других технологических параметров.
Таким образом, рассматривая совокупность признаков определяющих целесообразность применения того или иного вида футеровочного материала, для изделий эксплуатируемых в особо опасных производственных условиях, следует констатировать, что на данный момент времени футеровка химстоким стеклопластиком является наиболее предпочтительным видом футеровки ввиду своей универсальности, отличной химстойкости, технологичности и наличия явных эксплуатационных преимуществ.
2.1 Виды коррозионностойких материалов
Коррозионностойкие материалы для азотной промышленности, металлические и неметаллические материалы, способные противостоять разрушительному действию агрессивных сред; применяются для изготовления аппаратов, трубопроводов, арматуры и др. изделий, предназначенных для эксплуатации в условиях воздействия кислот, щелочей, солей, агрессивных газов и др. агентов. Под стойкостью материала понимают его способность сопротивляться коррозии в конкретной среде или в группе сред. Материал, стойкий в одной среде, может интенсивно разрушаться в другой. Способность материалов сопротивляться окислению при высоких температурах в газообразных средах (воздух, О2, СО2 и т. д.) называется жаростойкостью. К жаростойким материалам относятся сплавы железа с хромом (нержавеющие стали), сплавы титана, циркония, молибдена, тантала. Основной метод повышения жаростойкости сплавов на основе железа — легирование их элементами, способными создать на поверхности металла защитную окисную плёнку, препятствующую дальнейшему окислению. Такими элементами, кроме хрома, являются кремний, алюминий. В тех случаях, когда наряду с жаростойкостью требуется высокая прочность, применяют сплавы на никелевой основе, типа нимоников, инконелей.
Стойки к окислению в
В концентрированных азотной и серной кислотах стойки железо и низколегированные (содержащие менее 2—3% легирующих элементов) стали. Стойкость сталей в этих условиях определяется их способностью к пассивированию в результате образования на их поверхности тонких, но очень плотных окисных плёнок. Легирование стали хромом увеличивает эту способность. В горячих растворах серной кислоты стойки стали, легированные 25% Cr, 25% Ni, 2—3% Cu, сплавы титана, свинец. В средах, содержащих хлориды, аустенитные нержавеющие стали, а также сплавы алюминия подвергаются язвенной коррозии и особому виду разрушения — коррозии под напряжением. Для борьбы с коррозией под напряжением (коррозионным растрескиванием) повышают содержание Ni в сталях до 40% или вводят в них до 1,5% Cu. В хлоридсодержащих средах, в том числе в растворах соляной кислоты, стойки сплавы титана и сплав на никелевой основе, включающий в качестве компонента молибден, — хасталлой.
В природных водах (пресной и морской) при температурах до 100 °С стойки медь и её сплавы (бронза, латунь), а также алюминий и сплавы алюминия.
2.2 Выбор химически стойких неметаллических материалов
Химическая стойкость материалов неорганического происхождения зависит от большого числа факторов. К этим факторам относятся: химический и минералогический состав, пористость (открытые и закрытые поры), тип структуры (аморфная, мелкокристаллическая, крупнокристаллическая), характер агрессивной среды и ее концентрация, температура, давление, перемешивание среды и др. Большинство перечисленных факторов действует в различных сочетаниях совместно, что значительно осложняет подбор соответствующего материала или покрытия.
По химическому составу
материала в основном можно судить
о вероятном поведении его
в различных агрессивных
Не меньшее значение имеет и минералогический состав материала неорганического происхождения, количество отдельных его составляющих и их свойства. Так, например, природные горные породы, являющиеся во многих случаях полиминералами, вследствие различия коэффициентов термического расширения их отдельных составляющих склонны к растрескиванию при резких перепадах температуры; в частности, содержание значительного количества слюды в гранитах может вызвать их расслаивание. Следует также учитывать, какими веществами сцементированы материалы неорганического происхождения. Так, например, некоторые песчаники, содержащие большие количества кварца и сцементированные аморфным кремнеземом, обладают большей кислотостойкостью, чем песчаники, сцементированные известью или другими карбонатными минералами.
Разрушение материалов неорганического происхождения иногда имеет место вследствие пористости материала. Разрушение пористых материалов вызывается в основном возникновением в материале напряжений вследствие кристаллизации в порах солей, отложения в них продуктов коррозии или вследствие замерзания в порах воды. При полном заполнении объема пор и вследствие отсутствия возможности расширения механическое разрушение материала неизбежно. Кристаллизация солей в открытых порах строительных материалов (бетонов, цементов и т.д.) чаще всего наблюдается в сухом и жарком климате, при соприкосновении деталей сооружений с засоленными грунтами. Содержащаяся в последних влага интенсивно испаряется. Соли, которые осаждаются на строительных материалах, постепенно заполняют поры. Развивающееся в этих условиях кристаллизационное давление может достигнуть 0,44 Мн/м2. Химическая стойкость материала зависит также от его структуры. При кристаллической структуре материала его стойкость выше, чем при аморфной.
К неорганическим конструкционным материалам относятся:
Природные кислотостойкие силикатные материалы для азотной отрасли:
Граниты (состоят из 70-75% SiO2, 13-15% Al2O3, 7-10% оксидов магния, кальция, натрия; термостойкость до 250°С). Помимо использования его в строительстве, из него изготавливают корпуса электрофильтров, поглотительные башни в производстве азотной и соляной кислот, аппараты бромного и йодного производства.
Бештауниты (состоят из 60-70% SiO2; они тверды, тугоплавки, термостойкость до 800°С). Бештауниты используют как футеровочный материал для аппаратов, применяемых при получении минеральных кислот.
Андезиты (состоят из 59-62% SiO2; хорошо поддаются механической обработке, но не прочны). Применяется как наполнитель в кислотостойких цементах и бетонах.
Асбест (3MgO×2SiO2×2H2O; огнестоек). Используется как вспомогательный материал в виде нитей, фильтрующей ткани, наполнителя, для изоляции корпусов аппаратов.
Искусственные силикатные материалы для азотной отрасли:
Каменное литье (представляет собой плавленые материалы, имеющие кристаллическое строение; получаю путем плавления горных пород с добавками при 1400 -1450°С и последующей термической обработке отлитых изделий). Каменное литье характеризуется высокой химической стойкостью, механической прочностью, большим сопротивлением истиранию, применяется при температурах не выше 150°С.
Силикатное стекло (в основе SiO2 (65-75%), в качестве добавок оксиды щелочных и щелочноземельных металлов). Обладает высокой прозрачностью, хорошей механической прочностью, низкой теплопроводностью, стойкостью к воздействию химических реагентов. Широко применяется в качестве конструкционного и футеровочного материала. Из него изготовляют холодильники со змеевиками, ректификационные колонны, отдельные элементы аппаратуры.
Термостойкое стекло (63,3% SiO2; 5,5% Al2O3; 13,0% СаО; 4,0% MgO; 2,0% NaO; 2,0% F). Имеет термоустойчивость до 1000 - 1100°С, выдерживает давление до 4,5 - 5,0 МПа, прочность на изгиб 600 - 800кг/см2.
Алюмомагнезиальное стекло (71% SiO2;3% Al2O3; 3,5% СаО; 2,5% MgO; 1,5% К2О; 13-15% Na2O). Используется для изготовления стойких фильтрующих тканей. На алюмомагнезиальное стекло при 80 - 100°С слабое воздействие оказывает соляная кислота, более сильное - серная.
Кварцевое стекло получают путем плавления наиболее чистых природных разновидностей кристаллического кварца, горного хрусталя, жильного кварца или кварцевого песка с содержанием 98 -99% SiO2. Кварцевое стекло устойчиво по отношению ко всем кислотам любых концентраций при высоких температурах (исключение - плавиковая кислота при комнатной температуре и фосфорная при температуре выше 250°С), пропускает УФ и ИК лучи, газонепроницаемо до 1300°С. Изделия из него выдерживают длительное время при температуре 1100 - 1200°С.
Ситаллы - стеклокристаллические
Керамические материалы в азотной отрасли:
Кислотоупорная эмаль
Фарфор - тонкокристаллический материал, непроницаемый для воды и газов. Фарфор кислотостоек, тверд, износостоек, выдерживает резкие перепады температур, имеет низкую пористость.