Основы теории систем и системный анализ

Автор работы: Пользователь скрыл имя, 22 Июня 2011 в 17:08, курсовая работа

Описание

Системный подход актуален для специалистов по управлению экономическими объектами, особенно для тех, кто связан с созданием автоматизированных систем управления экономическими объектами.
Без системного подхода не обходится ныне ни одна сфера высокопрофессиональной деятельности. Можно с уверенностью констатировать, что многие ошибки в управлении государством вызваны тем, что государственные служащие и служащие местного самоуправления не владеют ни теорией систем, ни системным анализом. Важные решения принимаются нередко по принципу подброшенной монеты, без видения их воздействия на различные подсистемы сложного и взаимосвязанного общественного организма. Экономика и ее важнейшие составляющие бизнес и финансы отличаются незначительным инновационным тонусом, который сдерживается самим персоналом. Менеджеры, руководители фирм, директора предприятий, финансисты практически не знакомы с принципами управления сложными саморазвивающимися системами. Задачи, которые ставит перед ними жизнь, не решаются только потому, что они не могут понять их и сформулировать в системных категориях. Трагические последствия природных, экологических и техногенных катастроф в значительной мере обусловлены не просто непониманием системности, а неспособностью воплотить идеи в такие действия, которые не нарушали бы системные законы природы и общества.

Содержание

ВВЕДЕНИЕ 3
РАЗДЕЛ 1. ИСТОРИЯ ВОЗНИКНОВЕНИЯ И СТАНОВЛЕНИЯ СИСТЕМНОГО ПОДХОДА 4
1. 1. ВОЗНИКНОВЕНИЕ И СТАНОВЛЕНИЕ СИСТЕМНЫХ ИДЕЙ 4
1. 2. ВОЗНИКНОВЕНИЕ И РАЗВИТИЕ НАУКИ О СИСТЕМАХ 5
РАЗДЕЛ 2. ОСНОВЫ ТЕОРИИ СИСТЕМ 9
2. 1. ОСНОВНЫЕ СМЫСЛОВЫЕ ВАРИАЦИИ ПОНЯТИЯ “СИСТЕМА” 9
2. 2. ХАРАКТЕРИСТИКА ОСНОВНЫХ ОПРЕДЕЛЕНИЙ СИСТЕМЫ 10
2. 3. ОСНОВНЫЕ КАТЕГОРИИ СИСТЕМНОГО ПОДХОДА 11
2. 4. ВНЕШНИЕ И ВНУТРЕННИЕ СИСТЕМООБРАЗУЮЩИЕ ФАКТОРЫ 13
2. 5. СУЩНОСТЬ И НЕОБХОДИМОСТЬ КЛАССИФИКАЦИИ СИСТЕМ 15
2. 6. СУЩНОСТНАЯ КЛАССИФИКАЦИЯ СИСТЕМ 16
2. 7. СОСТАВ СИСТЕМЫ 21
2. 8. ПОНЯТИЕ СТРУКТУРЫ СИСТЕМЫ 24
РАЗДЕЛ 3. СИСТЕМНЫЙ АНАЛИЗ 26
3. 1. МЕТОДОЛОГИЯ СИСТЕМНОГО АНАЛИЗА 27
3. 2. ВИДЫ СИСТЕМНОГО АНАЛИЗА 30
3. 3. СТРУКТУРА СИСТЕМНОГО АНАЛИЗА 32
ВЫВОД 37
ЛИТЕРАТУРА 38

Работа состоит из  1 файл

ОТС.doc

— 542.00 Кб (Скачать документ)

специфицирующая — связи задают конкретные свойства системы, ее специфику. Определенный набор, характер, направленность и другие характеристики связей системы предопределяют ее свойства, функциональные возможности и развитие;

витальная — связи обеспечивают жизнедеятельность системы, они поддерживают обмен системы с окружающей средой, изменения в связях предопределяет характеристики различных этапов развития системы.

   Проблема  связей, как и проблема элементов, относится к числу недостаточно исследованных. Можно согласиться со В. Н. Спицнаделем в том, что предпринятые в литературе попытки прямо и сразу построить концепцию связи обнаружили относительно невысокую эффективность такого способа решения проблемы

   Классификация связей, предложенная И. В. Блаубергом, В. Н. Садовским, Э. Г. Юдиным, которые  выделяют связи взаимодействия, порождения, преобразования, строения, функционирования, развития, управления, является слишком обобщенной. Это приводит к тому, что связь заслоняется более сложными явлениями (взаимодействие, строение, функционирование и т. п.). В. В. Дружинин и Д. С. Конторов делят связи на прямые и обратные. При этом прямые связи бывают усиливающие (ослабляющие) сигнал, ограничивающие, запаздывающие и селектирующие (осуществляющие отбор), а обратные делятся: на положительные (усиливающие исходный процесс) и отрицательные (ослабляющие исходный сигнал); на гладкие (действуют во всем диапазоне изменений выходного процесса) и пороговые (действуют, когда процесс превышает некоторое значение, называемое нижним порогом и не превышает некоторое значение, выступающее как верхний порог); на двусторонние, реагирующие на увеличение и на уменьшение; связи первого, второго и старшего порядка; на связи мгновенные, запаздывающие и опережающие.

   Связи представляют собой довольно сложное  явление, они столь многоплановы, что требует осмысления с позиции нескольких подходов. Связи между элементами системы нужно рассматривать с точки зрения четырех подходов:

    формального — фиксирует наличие и направленность связи;

    функционального — фиксирует наличие или отсутствие функциональности в связях;

    логического — дается объяснение природы связей;

    содержательного — анализируются содержание, природа связей.

   Каждый  из этих подходов сам по себе имеет  ограниченные возможности для объяснения связей. Здесь требуется использование  их в единстве как взаимодополняющих подходов.

   При формальном подходе связи делятся на такие разновидности, как ненаправленные, направленные, прерывистые, односторонние, двусторонние, равноправные и неравноправные, внутренние и внешние. Кроме того, они различаются продолжительностью (долговременные и кратковременные), а также частотой (частые и редкие).

   При функциональном подходе связи рассматриваются с точки зрения выполняемой ими функции. При этом выделим два вида: нейтральные, при которых действие и противодействие равны по величине, изменений не происходит (поэтому эти связи называют нейтральными или статическими); функциональные, характеризующиеся тем, что действие и противодействие не совпадают, и элемент начинает реализовывать в системе некоторую функцию.

   В свою очередь функциональные можно  представить как связи:

    порождения, или причинно-следственные связи;

    преобразования— реализуются путем непосредственного взаимодействия двух объектов с переходом их в новое состояние;

    строения, или структурные, — обеспечивают строение системы;

    функциональные (в узком смысле слова) — обеспечивают функционирование системы;

    развития — смена состояний отличается качественными изменениями;

    управления — обеспечивают процесс управления системой

   Кроме того, под функциональный подход подпадают  прямые и обратные связи, каждая из которых выполняет свое назначение. Обратная связь информирует вход системы о состоянии ее выхода, а прямая — связывает один элемент с другим. Обратным связям принадлежит исключительно важная роль в управлении, поскольку они несут для субъекта управления необходимую ему информацию об объекте управления.

   При логическом подходе связи делятся в соответствии с основными типами детерминации: причинно-следственные — одно явление порождает другое. Причинная связь выступает как необходимая связь между явлениями А и В, где А причина, а В— следствие (при этом под причиной чаще всего понимается совокупность необходимых и достаточных условий осуществления события); корреляционные — изменение одного явления приводит к изменению другого, а это другое меняет, приводит к изменению первого; состояний — из одного состояния системы вытекает другое, а отношение порождения отсутствует.

   При содержательном подходе связи подразделяются на: энергетические— процессы передачи энергии между элементами системы; материально-вещественные — характеризуются материально-вещественными преобразованиями; информационные— представляют собой информационные потоки.

   Связи выступают важнейшей системной  характеристикой. Можно с уверенностью утверждать, чем большим числом связей характеризуется система, тем она  сложнее, тем больше возможностей для ее высокой организации.

   Максимальное  количество связей в системе определяется числом возможных сочетаний между элементами и может быть найдено по формуле

   С = n (n–1),

   где n— количество элементов, входящих в систему;

        С— количество связей между ними.

   Если  система состоит из пяти элементов, то максимальное количество связей для  нее равно 20. Эта формула верна  только для тех систем, у которых между двумя элементами допустима одна связь.

   2. 8. Понятие структуры  системы

   Структура системы (лат. structura — строение, порядок связи) — это совокупность устойчивых связей между элементами системы, которые обеспечивают целостность системы и тождественность самой себе. Структура оказывается намного богаче состава, ибо состав отвечает на вопрос “Из чего состоит система?”, а структура обеспечивает ответ на более сложный вопрос: “Как устроена система?”. Один из основоположников исследования структур В. И. Свидерский писал: “Под понятием структуры мы будем понимать принцип, способ, закон связи элементов целого, систему отношений элементов в рамках данного целого”, т.е. термин “структура” является более богатым по сравнению с термином “состав”. Он обладает способностью не только фиксировать свойства системы, но и объяснять их определенным строением системы. Система становится системой только тогда, когда ее элементы, имеющие определенную пространственную, временную и целевую организацию, определенным образом взаимосвязываются один с другим.

   Структура системы объясняет процессы, которые  представляют собой развертывание элементов системы во времени. Кроме того, временная структура позволяет понять процессы развития системы, ее движение от прошлого к настоящему и к будущему.

   Хотя  время однонаправлено от прошлого к  будущему, соотношение элементов прошлого, настоящего и будущего в системах одной и той же природы может быть различным. В силу действия разных причин (факторов, условий и т.д.) одни элементы системы могут как бы задерживаться в прошлом, другие — элементы настоящего, а третьи символизируют будущее.

   Структуры можно классифицировать по разным основаниям:

   сферам  существования — материальные и  мысленные; выполняемой роли — нормативная, идеальная, целевая, реальная; размещению — внутренняя и внешняя; направленности — субстанциальные и функциональные; разнообразию — простые и сложные; характеру связи — порядковые, композиционные, топологические; типу связей — прямые, обратные, смешанные; устойчивости структуры — детерминированные, вероятностные, хаотические; композиции структуры — координационные, иерархические, смешанные; степени равноправия элементов — структуры с равноправными элементами и структуры с неравноправными элементами; степени открытости — открытие и закрытые; временной детерминации — прошлые, настоящие, будущие; степени изменчивости — статические и динамические.

   Любая структура описывается следующими основными характеристиками:

  • общим числом связей, характеризующих сложность системы;
  • общим числом взаимодействий, которые определяют устойчивость системы;
  • частотой связей, т.е. количеством связей, приходящихся на один элемент, определяющих интенсивность взаимодействия элементов;
  • числом внутренних связей, которые определяют внутреннее устройство системы;
  • числом внешних связей, характеризующих взаимодействие системы со средой, ее открытость.

   В практике управления структуры выполняют  весьма многообразные роли. Они могут  выступать в виде некоторой нормативной системы, которая используется для приведения в соответствие с ними других систем, как некоторый идеал деятельности, а также строиться под поставленные цели и задачи деятельности.

   Для практической деятельности особенно важны  две проблемы: описание и оптимизация структур. Для описания структур применяется теория графов.

   Граф  — графическая модель структуры, которая состоит из множества вершин и ребер (дуг), символизирующих элементы и их связи. Граф определяется: множеством вершин графа и множеством пар вершин, между которыми существует связь.

   Теория  графов — это область дискретной математики, занимающаяся исследованием и решением разнообразных проблем, связанных с графами. Для графа свойственно то, что число путей, по которым можно пройти от одной вершины к другой, отличается разнообразием. При этом наблюдаются различия в длительности этих путей. На идее сокращения пути прохождения между крайними вершинами графа строится оптимизация структур. Граф имеет две формы представления: графическую и матричную. При этом матрица графа называется матрицей инциденций (рис. 4)

   

   Рис. 4 Граф и матрица инциденций 

   В матрице наличие связи фиксируется единицей, а ее отсутствие — нулем.

   Важной  структурной характеристикой системы является ее устойчивость. Она сложна и противоречива. С одной стороны, устойчивость определяет способность структуры противостоять внешним воздействиям, т.е. это характеристика жизнеспособности системы. С другой стороны, наиболее устойчивые структуры свойственны для детерминистских систем, которые отличаются примитивностью. Современное представление о структурах широко использует такое понятие, как “хаотические, или диссипативные структуры”, позволяющие объяснять переходные состояния системы.

 

Раздел 3. Системный анализ

 

  Системный анализ представляет собой важный объект методологических исследований и одно из наиболее бурно развивающихся научных направлений. Ему посвящено множество монографий и статей. Наиболее известные его исследовател: В. Г. Афанасьев, Л. Берталанфи, И. В. Блауберг, А. А. Богданов, В. М. Глушков, Т. Гоббс, О. Конт, В. А. Карташов,                      С. А. Кузьмин, Ю. Г. Марков, Р. Мертон, М. Месарович, Т. Парсонс, Л. А. Петрушенко,             В. Н. Садовский, М. И. Сетров, Г. Спенсер, В. Н. Спицнадель, Я. Такахара, В. С. Тюхтин,             А. И. Уемов, У. Черчмен, Э. Г., Юдин и др.

  Популярность  системного анализа ныне столь велика, что можно перефразировать известный афоризм выдающихся физиков Уильяма Томсона и Эрнеста Резерфорда относительно науки, которую можно разделить на физику и собирание марок. Действительно, среди всех методов анализа системный — настоящий король, а все другие методы можно с уверенностью отнести к его невыразительной прислуге.

  Вместе  с тем всякий раз, когда ставится вопрос о технологиях системного анализа, сразу же возникают непреодолимые трудности, связанные с тем, что устоявшихся интеллектуальных технологий системного анализа в практике нет. Имеется только некоторый опыт применения системного подхода в различных странах. Таким образом, налицо проблемная ситуация, характеризующаяся постоянно нарастающей потребностью технологического освоения системного анализа, которое разработано весьма недостаточно.

  Ситуация  усугубляется не только тем, что не разработаны интеллектуальные технологии системного анализа, но и тем, что нет однозначности в понимании самого системного анализа. Это, несмотря на то, что уже 90 лет прошло со времени выхода в свет основополагающего труда в области теории систем — “Тектологии” А. А. Богданова, и почти полстолетия насчитывает история развития системных идей.

Информация о работе Основы теории систем и системный анализ