Прогнозирование банкротства: основные методики и проблемы

Автор работы: Пользователь скрыл имя, 20 Марта 2012 в 15:45, реферат

Описание

На нынешнем этапе развития российской экономики выявление неблагоприятных тенденций развития предприятия, предсказание банкротства приобретают первостепенное значение. Вместе с тем, методик, позволяющих с достаточной степенью достоверности прогнозировать неблагоприятный исход, практически нет. Более того, нет единого источника, который бы описывал большинство известных методик.

Работа состоит из  1 файл

ПРОГНОЗИРОВАНИЕ БАНКРОТСТВА.docx

— 359.66 Кб (Скачать документ)

2. Разработка  моделей прогнозирования банкротства

Общее количество финансовых параметров, которые могут быть определены на основе финансовой отчетности, очень  велико. Очевидно, что было бы нерациональным и трудоемким использовать все известные  финансовые коэффициенты для целей  прогнозирования банкротства. Поэтому, очередным шагом при разработке модели прогнозирования банкротства  должен стать выбор ключевых переменных - определенных финансовых коэффициентов, которые лучше других позволяют  оценить финансовое состояние предприятия.

Следует отметить, что в предыдущих исследованиях  нет единого решения данной проблемы. Таким образом, без предварительного анализа создание списка финансовых коэффициентов, наиболее подходящих в  качестве переменных для конструируемой модели, достаточно сложное дело. Традиционно, для этого используются различные  процедуры сжатия данных (data reduction procedures).

Второй, и последний, шаг при разработке модели прогнозирования  банкротства заключается в применении соответствующих техник моделирования, для того чтобы найти правила, позволяющие сделать различие между  компаниями-банкротами и компаниями-небанкротами.

Поскольку выбор  ключевых переменных напрямую зависит  от используемой техники моделирования, а также в силу того, что существует разница в терминологии, используемой разными авторами, думается, что  стоит кратко обобщить наиболее часто  упоминаемые модели прогнозирования  банкротства.

2.1. Классификация  моделей прогнозирования банкротства

Попытки разработки моделей прогнозирования банкротства  были начаты в середине 1930-х годов и продолжаются по сей день. Поскольку тема классификации моделей прогнозирования банкротства достаточно обширна, и достойна детального рассмотрения в отдельной статье, здесь мы остановимся лишь на основных моментах, для того чтобы описать общую картину состояния проблемы. Обобщая, результаты предыдущих исследований и основываясь на характеристиках используемых техник моделирования, могут быть выделены три группы моделей прогнозирования банкротства:

  • статистические модели (statistical models),
  • модели искусственного интеллекта (artificial intelligence models),
  • теоретические модели (theoretic models).

Morris (1997) определил первые две группы как позитивные, поскольку модели фокусируются на симптомах банкротства: ".... они пытаются объяснить с помощью индуктивных аргументаций, почему на практике некоторые компании становятся банкротами". Последняя категория рассматривает только случаи банкротства, другими словами, эти модели "... пытаются объяснить с помощью дедуктивной аргументации, почему определенная часть предприятий может стать банкротами". Подобные модели были определены как нормативные.

Статистические  модели были получены с помощью применения различных статистических методов  классификации или оптимизации  к проблеме прогнозирования банкротства. Существует четыре стадии в развитии статистических моделей прогнозирования  банкротства:

  • однофакторный анализ (univariate analysis),
  • многофакторный дискриминантный анализ (multiple discriminant analysis),
  • анализ условной вероятности (conditional probability analysis),
  • анализ выживаемости (survival analysis).

Среди техник искусственного интеллекта, которые были успешно  применены к проблеме прогнозирования  банкротства, можно назвать следующие  методы:

  • дерево решений (decision tree),
  • генетический алгоритм (genetic algorithm),
  • нейронная сеть (neural network),
  • теория нечетких множеств (rough sets theory),
  • метод опорных векторов (support vector machines).

Кроме того, в последнее  время ряд финансовых теорий были успешно применены к проблеме прогнозирования банкротства, в  частности:

  • теория энтропии (entropy theory);
  • теория разорения игрока (gambler`s ruin theory);
  • теория оценки опциона (option-priced theory).

Aziz and Dar (2004) сравнили, как часто были использованы различные техники моделирования, а также их точность прогнозирования. Результатом подобного сравнения стал вывод о том, что 64% предыдущих исследований было связано со статистическими моделями прогнозирования банкротства, 25% - с моделями искусственного интеллекта и 11% - с разработкой теоретических моделей. Авторы объяснили подобные результаты хронологией появления различных технологий моделирования. Сравнение общей точности прогнозирования свидетельствовало о превосходстве моделей искусственного интеллекта - - 88%, при этом теоретические модели показали 85%, а статистические модели 84% точность прогнозирования. На основе этих результатов, в дальнейшем акцент был сделан, прежде всего, на разработке статистических моделей, как на наиболее часто встречающихся, и на моделях искусственного интеллекта, как на наиболее эффективных с точки зрения точности прогнозирования. Результаты выбора ключевых переменных - представлены в таблице 2.

Таблица 2 - Результаты поиска ключевых переменных для различных  техник моделирования

Техника моделирования

Использованное программное обеспечение

Метод выбора переменных

Количество переменных

Переменные

1

Однофакторный анализ

SPSS for Windows (version 13.3.0)

F - статистика

10

VAR00011, VAR00013, VAR00026, VAR00036, VAR00045, VAR00054, VAR00057, VAR00067, VAR00072, VAR00080

2

Многофакторный дискриминантный анализ

SPSS for Windows (version 13.3.0)

Лямбда Уилкса

6

VAR00005, VAR00008, VAR00016, VAR00050, VAR00053, VAR00064

3

Анализ условной вероятности

SPSS for Windows (version 13.3.0)

Лямбда Уилкса

6

VAR00005, VAR00008, VAR00016, VAR00050, VAR00053, VAR00064

4

Дерево решений

SPSS for Windows (version 13.3.0)

CART

10

VAR00017, VAR00019, VAR00038, VAR00041, VAR00044, VAR00049, VAR00054, VAR00057, VAR00059, VAR00080

5

Генетический алгоритм - Нейронная  сеть

Statistica Neural Networks (version 4.4.0)

Генетический алгоритм

23

VAR00002, VAR00007, VAR00008, VAR00014, VAR00017, VAR00022, VAR00026, VAR00027, VAR00028, VAR00033, VAR00034, VAR00036, VAR00037, VAR00049, VAR00050, VAR00055, VAR00056, VAR00057, VAR00065, VAR00067, VAR00075, VAR00078, VAR00080

6

Теория нечетких множеств

Rosetta GUI software system (version 1.1.4.4.41)

Теория нечетких множеств

3

VAR00019, VAR00050, VAR00054

7

Метод опорных векторов

Statistica Neural Networks (version 4.4.0)

Обратный отбор

16

VAR00005, VAR00014, VAR00017, VAR00020, VAR00022, VAR00032, VAR00035, VAR00036, VAR00039, VAR00041, VAR00043, VAR00049, VAR00050, VAR00059, VAR00065, VAR00067


 

 2.2. Результаты анализа

После определения  ключевых переменных, следующим этапом является применение соответствующих  технологий моделирования к исходному  набору данных. Хотя использование  различных пакетов статистической обработки данных значительно упрощает проведение необходимых расчетов, важным моментом является обязательная проверка корректности полученных результатов. Основная идея здесь заключается  в том, что высокая точность классификации  данных, на которых была создана  модель, не может являться убедительным свидетельством ее эффективности. Необходима дополнительная проверка. Другими словами, разработку модели следует осуществить  на одних данных, а проверку корректности полученных результатов - на других (holdout sample). Очевидно, что использование данного метода ограничено необходимостью набора данных большого объема. Поскольку количество открытых японских компаний банкротов ограничено, создание двух репрезентативных выборок невозможно.

На основании  вышеизложенного в данном исследовании для оценки того, как хорошо разработанные  модели распространяются на всю генеральную  совокупность предприятий, использовалась так называемая процедура сравнительной  валидности (cross-validation procedure). Встречается также и другое название данного метода - метод складного ножа (jackknife method). На основе процедуры сравнительной валидности, исходный набор данных случайным образом разбивается на несколько подгрупп (в данном исследовании на 20 подгрупп). Соответствующая технология моделирования затем применяется к данным из 19 подгруппам, а полученная на этой основе модель используется для классификации наблюдений из оставшейся подгруппы. Путем определения количества правильно классифицированных наблюдений оставшейся подгруппы, определяется точность прогнозирования. Подобная процедура затем повторяется для всех подгрупп. Результаты, полученные на основе всех повторений, усредняются с целью получения единственной меры точности для модели.

Обычно результаты классификационных моделей представляются в виде матрицы несоответствия (confusion matrix). В таблице 3 представлены результаты для модели на основе многофакторного дискриминантного анализа.

Таблица 3 - Матрица  несоответствия для модели на основе многофакторного дискриминантного анализа

   

Первоначальная принадлежность к  одной из групп

Предсказанная принадлежность к одной  из групп

Сумма

     

Небанкрот

Банкрот

 

При разработке модели

Количество,

Небанкрот

178

32

210

   

Банкрот

30

180

210

 

%

Небанкрот

84,8

15,2

100

   

Банкрот

14,3

85,7

100

При процедуре сравнительной валидности

Количество,

Небанкрот

176

34

210

   

Банкрот

30

180

210

 

%

Небанкрот

83,8

16,2

100

   

Банкрот

14,3

85,7

100


На основе результатов, представленных в таблице 3, общая  точность прогнозирования при разработке модели на основе многофакторного дискриминантного анализа составила (178+180)/420 = 85,3%. Вместе с тем, общая точность модели при процедуре сравнительной валидности, как и ожидалось, оказалась несколько ниже, и составила (178+180)/420 = 84,8%. . Помимо вышеназванных характеристик, важными показателями эффективности модели являются величины ошибок 1-го и 2-го типов. Ошибка 1-го типа возникает, когда предприятие-банкрот ошибочно классифицируется моделью как предприятие-небанкрот (в данном случае ошибка 1-го типа составила 14,3%). Ошибка 2-го типа регистрируется, когда предприятие-небанкрот классифицируется как банкрот (в данном случае ошибка 2-го типа составила 16,2%).

Показатели точности прогнозирования всех разработанных  моделей представлены в сводной  таблице (табл. 4).

Таблица 4 - Сравнение  точности прогнозирования разработанных  моделей

Техника моделирования

Данное исследование

Средняя точность в зарубежных исследованиях, Aziz and Dar (2004)

 

Общая точность классификации исходного  набора данных

Процедура сравнительной валидности

 
   

Ошибка 1 типа

Ошибка 2 типа

Общая точность

 

Однофакторный анализ

83,10%

21,40%

14,80%

80,70%

81%

Многофакторный дискриминантный анализ

85,30%

14,30%

16,20%

84,80%

86%

Анализ условной вероятности

85,30%

14,30%

16,20%

84,80%

87%

Дерево решений

95,50%

17,10%

10,00%

86,40%

87%

Генетический алгоритм – Нейронная  сеть

95,80%

9,00%

10,00%

90,50%

89%

Теория нечетких множеств

90,00%

12,90%

11,90%

87,60%

91%

Метод опорных векторов

89,10%

10,00%

15,20%

87,40%

87%


3. Выводы  и рекомендации для дальнейшей  работы

После основополагающих работ Beaver (1966) и Altman (1968) на протяжении последних сорока лет проблема прогнозирования банкротства была одной из наиболее часто встречающихся тем в литературе по финансам предприятия. Неубывающий интерес академических кругов к данной проблеме был стимулирован как увеличением числа случаев банкротств и их деструктивных последствий, с одной стороны, так и развитием компьютерных технологий и улучшением доступности финансовых данных, с другой стороны. Осознавая актуальность данной проблемы, большое число научных исследований было связано с разработкой широкого круга моделей прогнозирования банкротства.

Основные результаты исследования, представленного в  статье, состоят в следующем.

  • Как это и ожидалось, различные техники моделирования привели к выбору различных финансовых коэффициентов в качестве ключевых переменных. Кроме того, количество переменных в разных моделях также различно. Это явилось результатом того, что каждая из техник моделирования подразумевает особый метод выбора значимых переменных. Также необходимо отметить, что коэффициент задолженности (Debt to Equity Ratio) показал себя как наиболее полезный для прогнозирования банкротства показатель, так как вошел в список ключевых переменных для пяти из семи разработанных моделей.
  • Во-вторых, было найдено, что все разработанные модели были способны прогнозировать банкротство предприятий с точностью более чем 80%. Однако модели искусственного интеллекта показали более высокую точность прогнозирования, чем статистические модели.
  • В-третьих, точность разработанных моделей прогнозирования банкротства японских компаний в общем, повторяла результаты моделей, полученных зарубежом (на основе данных не японских предприятий).

Информация о работе Прогнозирование банкротства: основные методики и проблемы