Автор работы: Пользователь скрыл имя, 11 Декабря 2012 в 13:13, курс лекций
Достаточно трудно дать точное определение, что такое интеллект человека, потому что интеллект - это сплав многих навыков в области обработки и представления информации. Интеллект ( intelligence ) происходит от латинского intellectus — что означает ум, рассудок, разум; мыслительные способности человека. С большой степенью достоверности интеллектом можно называть способность мозга решать (интеллектуальные) задачи путем приобретения, запоминания и целенаправленного преобразования знаний в процессе обучения на опыте и адаптации к разнообразным обстоятельствам.
1.1. Основные понятия искусственного интеллекта
1.2. История развития искусственного интеллекта
1.3. Задачи искусственного интеллекта
1.4. Экспертные системы - направление исследований по искусственному интеллекту
1.5. Классификация и виды экспертных систем
1.6. Область применения экспертных систем
Структура и функционирование экспертных систем
2.1. Типовая структура экспертных систем
2.2. Интерфейс пользователя
2.3. Подсистема приобретения знаний
2.4. База знаний
2.5. База данных
2.6. Механизм логического вывода
2.7. Объяснение решений
2.8. Функционирование экспертных системах
Представление знаний
3.1. Основные понятия и состав знаний
3.2. Модели представления знаний
3.3. Представление нечетких знаний
Методы поиска решений
4.1. Поиск решений в одном пространстве
4.2. Поиск решений в иерархии пространств
4.3. Поиск решений в альтернативных пространствах
4.4. Поиск решений с использованием нескольких моделей
4.5. Выбор метода решения задач
Инструментальные средства разработки экспертных систем
5.1. Классификация инструментальных средств
5.2. Языки программирования
5.3. Языки инженерии знаний
5.4. Средства автоматизации разработки экспертных систем
5.5. Оболочки экспертных систем
Технология разработки экспертных систем
6.1. Стадии создания экспертных систем
6.2. Этапы разработки экспертных систем
6.3. Разработка прототипа экспертной системы
Шаг 2. Рассматривается правило 2. Его условие истинно, т.к. утверждение из условия имеется в рабочем множестве. Примеряем правило 2; добавляем к рабочему множеству факт "Нужно взять с собой зонтик". Целевое утверждение выведено.
Обратный порядок вывода:
заключения просматриваются до тех
пор, пока не будет обнаружены в рабочей
памяти или получены от пользователя
факты, подтверждающие одно из них. В
системах с обратным выводом вначале
выдвигается некоторая
В рассматриваемом примере вывод целевого утверждения "Нужно взять с собой зонтик" обратной цепочкой рассуждений выполняется следующим образом:
Шаг 1. Рассматривается правило 1. Оно не содержит цели в правой части. Переходим к правилу 2.
Шаг 2. Рассматривается правило 2. Оно содержит цель в правой части правила. Переходим к правой части правила и рассматриваем в качестве текущей цели утверждения "Скоро пойдет дождь".
Шаг 3. Текущей цели нет в рабочем множестве. Рассмотрим правило 1, которое содержит цель в правой части. Обе компоненты его условия имеются в рабочем множестве, так что условие истинно. Применяем привило 1; в результате выводим утверждение "Скоро пойдет дождь"; которое было нашей предыдущей целью.
Шаг 4. Применяем правило 2. условием которого является данное утверждение. Получаем вывод исходного утверждения.
Заметим, что для упрощения ситуации мы предположили, что в обоих случаях факты "Небо покрыто тучами" и "Барометр падает" уже известны системе. На самом деле система выясняет истинность или ложность факта, входящего в условие некоторого правила, спрашивая об этом пользователя в тот момент, когда она пытается применить правило. Приведенный пример сознательно выбран очень простым и не отражающим многих проблем, связанных с организацией вывода в экспертной системе. В частности, из примера может создаться впечатление, что прямая цепочка рассуждений эффективнее, чем обратная, что на самом деле, вообще говоря, не так. Эффективность той или иной стратегии вывода зависит от характера задачи и содержимого базы знаний. В системах диагностики чаще применяется прямой вывод, в то время как в планирующих системах более эффективным оказывается обратный вывод. В некоторых системах вывод основывается на сочетании обратного и ограниченно- прямого. Такой комбинированный метод получил название циклического.
2.7 Объяснение решений
Объяснительный компонент [3] ЭС объясняет, как система получила решение задачи (или почему она не получила решение) и какие знания она при этом использовала, что облегчает эксперту тестирование и повышает доверие пользователя к полученному результату. Поскольку системы, основанные на знаниях, реализуются на компьютерах, то и входная информация воспринимается или в виде, понятном компьютеру, т.е. в битах и байтах. Однако для того чтобы мог взаимодействовать неподготовленный пользователь, в нее требуется включить средства общения на естественном языке. Подавляющее большинство систем, основанных на знаниях, обладают достаточно примитивным интерфейсом на естественном языке - допустимые входные сообщения пользователя ограничены набором понятий, содержащихся в базе знаний. Итак, на примере простой ЭС и базы знаний диалог пользователя с системой можно представить себе следующим образом:
Система: Вы хотите узнать, нужно ли взять с собой зонтик?
Пользователь: Да.
Система: Верно ли, что небо покрыто тучами?
Пользователь: Да.
Система: Верно ли, что барометр падает?
Пользователь: Да.
Система: (после некоторого "размышления") Нужно взять с собой зонтик.
Как видно из этого примера, в ходе консультации инициатива диалога принадлежит системе, а сама консультация у ЭС выглядит так же, как и консультация у эксперта- человека: задается ряд вопросов и на основании их анализа выдается экспертное заключение. Однако в отличие от беседы со специалистом, диалог с ЭС имеет свои психологические особенности: большинство пользователей (по вполне понятным причинам, таким, как отсутствие опыта работы на компьютерах, лаконичность диалога с ЭС, отсутствие пояснений в ходе консультации и другим) склонны меньше доверять "мнению" ЭС, чем мнению "живого" эксперта. Чтобы удостовериться в "разумности" и "компетентности" ЭС, пользователь может обратиться к ее подсистеме объяснения. Рассмотрим теперь работу подсистемы объяснения. Для получения объяснения в процессе консультации пользователь может "перехватить инициативу" диалога в тот момент, когда система задает очередной вопрос, "переспросив" в ответ систему, почему она его задала. Таким образом, вместо ответа на вопрос системы, пользователь может задать ей встречный вопрос: ПОЧЕМУ? (" Почему система задала такой вопрос?"). Система интерпретирует вопрос "Почему?" в "понятных" ей терминах дерева вывода, поднимаясь по нему на один ярус выше и находя правило, для применения которого система задает этот вопрос. Пользователю выдается информация об этом правиле, о состоянии вычисления его условиям о заключении данного правила (текущей цели). Пусть в нашем примере диалога с ЭС пользователь вместо ответа на вопрос системы: "Верно ли, что барометр падает?" задает ей встречный вопрос: "ПОЧЕМУ?". ЭС обращается к подсистеме объяснения, которая выдает пользователю следующее сообщение:
[1.0] Эта информация необходима, чтобы установить, что скоро пойдет дождь.
Ранее было установлено, что:
[1.1] Небо покрыто тучами.
Следовательно, если:
[1.2] Барометр падает, то скоро пойдет дождь.(Правило 1).
Двойные номера в квадратных скобках имеют следующий смысл. Для облегчения работы пользователя подсистема объяснения нумерует свои ответы (номер ответа, в данном случае- 1. является первой цифрой номера), а в каждом ответе- нумерует также утверждения, о которых в нем идет речь. Пользователь может использовать двойные номера для ссылок на утверждения, не выписывая их явно. Например, номер 1.1 обозначает утверждение "Небо покрыто тучами". Допустим, что пользователь хочет еще дальше проследить логику рассуждений системы и узнать, почему ей необходимо установить, скоро ли пойдет дождь. Для этого он может повторно задать ей вопрос:
ПОЧЕМУ?
("Почему необходимо
установить, что скоро пойдет
дождь?"). Второй ответ системы
аналогичен первому; в нем
[2.0] Эта информация необходима, чтобы установить, что нужно взять с собой зонтик. Если: [2.1] Скоро пойдет дождь, то нужно взять с собой зонтик. (Правило 2).
Утверждение [2.0] является исходным целевым утверждением системы. Таким образом, теперь ход рассуждений системы пользователю полностью понятен. Вопрос "ПОЧЕМУ?" позволяет проследить ход рассуждений системы от посылок к заключениям. Однако для более детального осмысления процесса вывода удобно было бы иметь возможность изучать его и в противоположном порядке- от заключений к посылкам. Для этого служит другой вопрос, который также "понимает" подсистема объяснений:
КАК N?
где N- номер утверждения, выданный подсистемой объяснения на одном из предыдущих шагов диалога. Например, в ответ на вопрос:
КАК 2.0?
"Как получен утверждение
2.0?" подсистема объяснения выдает
информацию в правиле, которое
было применено для его
КАК 3.1? "Как было использовано правило 2?".
Ответ системы: Ранее установлено, что: [4.1] Скоро пойдет дождь. Следовательно, нужно взять с собой зонтик. Выясним теперь, как получено утверждение 4.1:
КАК 4.1?
Ответ системы: [5.1] Используется правило 1, заключением которого является, что скоро пойдет дождь. Наконец, выясним, как использовано правило 1:
КАК 5.1?
Ответ системы:
Ранее установлено, что:
[6.1] Небо покрыто тучами.
[6.2] Барометр падает.
Следовательно, скоро пойдет дождь.
Как были получены утверждения 6.1 и 6.2, пользователь помнит, поскольку он отвечал на вопросы системы относительно этих утверждений. Если все же он задаст системе вопрос КАК 6.1? или КАК 6.2?, то система напомнит ему об этом. Описанная модель объяснения используется в системе MYCIN. Достоинством ее является возможность получения объяснения любого шага работы системы, недостатком - жесткая привязка к дереву вывода. Для пользователя- непрограммиста такой способ объяснения может показаться излишне детализованным и слишком формальным, а нужно было бы объяснение на "более высоком уровне"- с точки зрения здравого смысла и без углубления в детали. Подобные модели объяснения только начинают появляться в ЭС и требуют более сложной организации знаний.
2.8 Функционирование ЭС
ЭС работает в двух режимах [3]:
режиме приобретения знаний
режиме решения задачи, называемом также режимом консультации или режимом использования ЭС
В режиме приобретения знаний
общение ЭС осуществляет эксперт
через посредничество инженера по знаниям.
В этом режиме эксперт, используя
компонент приобретения знаний, наполняет
систему знаниями, которые позволяют
ЭС в режиме решения самостоятельно
(без эксперта) решать задачи из проблемной
области. Эксперт описывает проблемную
область в виде совокупности данных
и правил. Данные определяют объекты,
их характеристики и значения, существующие
в области экспертизы. Правила
определяют способы манипулирования
с данными, характерные для
В режиме консультации общение с ЭС осуществляет конечный пользователь, которого интересует результат и (или) способ его получения. Необходимо отметить, что в зависимости от назначения ЭС пользователь может не быть специалистом в данной проблемной области (в этом случае он обращается к ЭС за результатом, не умея получить его сам) или быть специалистом (в этом случае пользователь может сам получить результат, но он обращается к ЭС с целью либо ускорить процесс получения результата, либо возложить на ЭС эту рутинную работу). В режиме консультации данные о задаче через интерфейс пользователя поступают в рабочую память (здесь хранятся промежуточные данные решаемой в текущий момент задачи). На основе входных данных из рабочей памяти, общих данных о проблемной области и правил базы знаний с помощью механизма логического вывода формируется решение задачи. ЭС при решении задачи не только исполняет предписанную последовательность операций, но и предварительно формирует ее.
3.1 Основные понятия и состав знаний.
Знания - это выявленные
закономерности предметной
Представления
знаний – это соглашение о
том, как описывать реальный
мир. В естественных и
Системой представления знаний (СПЗ) называют средства, позволяющие описывать знания о предметной области с помощью языка представления знаний, организовать хранение знаний в системе (накопление, анализ, обобщение и организация структурированности знаний), выводить новые знания и объединять их с имеющимися, выводить новые знания из имеющихся, находить требуемые знания, устранять устаревшие знания, осуществлять интерфейс между пользователем и знаниями.
Данные – это
отдельные факты,
Состав знаний.
В отличие от
данных знания обладают
Внутренняя интерпретируемость.
Каждая информационная единица должна иметь уникальное имя, по которому интеллектуальная система (ИС) находит её, а также отвечает на запросы, в которых это имя упомянуто. Когда данные, хранящиеся в памяти, были лишены имен, то отсутствовала возможность их идентификации системой. Данные могла идентифицировать лишь программа, извлекающая их из памяти по указанию программиста, написавшего программу. Что скрывается за тем или иным двоичным кодом машинного слова, системе было неизвестно.
Структурированность.
Информационные единицы должны были обладать гибкой структурой. Для них должен выполняться “принцип матрешки”, т.е. рекурсивная вложенность одних информационных единиц в другие. Каждая информационная единица может быть включена в состав любой другой, и из каждой единицы можно выделить некоторые её составляющие. Другими словами должна существовать возможность произвольного установления между отдельными информационными единицами отношений типа “часть – целое”,” род – вид” или “элемент – класс”.
Информация о работе Искусственный интеллект и экспертные системы