Автор работы: Пользователь скрыл имя, 12 Октября 2011 в 15:32, курс лекций
Данная часть курса лекций по дисциплине «Математическое моделирование в экологии» включает в себя следующие разделы: общие понятия о системном анализе и математических методах в экологии, экологической системе как объекте математического моделирования; основные этапы построения моделей; краткая характеристика аналитических, имитационных, эмпирико-статистических моделей процессов и взаимосвязей, возникающих в экосистемах
Взаимосвязь экосистемы со средой и пределы толерантности воздействий
Вся история становления экологии свидетельствует о важности и постоянном интересе исследователей к оценке воздействия среды на биоценотические компоненты экосистем. Среди стрессоров окружающей среды Р. Шуберт выделяет три группы:
Для
антропогенных стрессоров принято
использование термина “
К приведенным определениям следует добавить несколько уточнений:
Действие произвольного фактора среды Х на любой экологический показатель Y, который принимается за оценку качества всей экосистемы, традиционно описывается некоторым подмножеством математических формул, из которых наиболее популярны следующие зависимости:
Например, реакция экосистемы на действие фактора по логистической модели (правее диапазона толерантности) состоит из четырех последовательных фаз:
а) фазы
активного сопротивления всей системы
за счет внутренних ресурсов,
б) фазы экспоненциального "выбивания"
слабых звеньев, когда ресурс, поддерживающий
устойчивость экосистемы, исчерпывается,
в) фазы роста адаптационных
процессов в системе, противодействующих
влиянию фактора,
г) и, наконец, фазы
стабилизации, когда "выжившие"
компоненты экосистемы воспринимают установившийся
уровень фактора в пределах своего диапазона
толерантности.
Лекция 5. Аналитические и имитационные модели
Аналитические модели (англ. analytical models) – один из классов математического моделирования, широко используемый в экологии. При построении таких моделей исследователь сознательно отказывается от детального описания экосистемы, оставляя лишь наиболее существенные, с его точки зрения, компоненты и связи между ними, и использует достаточно малое число правдоподобных гипотез о характере взаимодействия компонентов и структуры экосистемы. Аналитические модели служат, в основном, целям выявления, математического описания, анализа и объяснения свойств или наблюдаемых феноменов, присущих максимально широкому кругу экосистем. Так, например, широко известная модель конкуренции Лотки–Вольтерра позволяет указать условия взаимного сосуществования видов в рамках различных сообществ.
Одной из основных задач системной динамики является оценка устойчивости экосистем и описание качественных перестроек их поведения под воздействием внешних факторов. Наиболее адекватным математическим аппаратом построения и анализа таких аналитических моделей служит качественная теория дифференциальных уравнений и теория бифуркаций. Особую роль играют стохастические модели потенциальной эффективности экосистем Б.С. Флейшмана.
При
моделировании экосистем
В качестве примера аналитической модели гидробиологических процессов "цветения водохранилищ" укажем на работы С.В. Крестина и Г.С. Розенберга, где в рамках взаимодействий систем конкуренции видов и "хищник - жертва" дано возможное объяснение феномена вспышек численности сине-зеленых водорослей и более сложного процесса "волны цветения" по профилю водохранилища.
Имитационные модели (англ. simulation models) – один из основных классов математического моделирования. Целью построения имитаций является максимальное приближение модели к конкретному (чаще всего уникальному) экологическому объекту и достижение максимальной точности его описания. Имитационные модели претендуют на выполнение как объяснительных, так и прогнозных функций, хотя выполнение первых для больших и сложных имитаций проблематично (для удачных имитационных моделей можно говорить лишь о косвенном подтверждении непротиворечивости положенных в их основу гипотез).
Имитационные модели реализуются на ЭВМ с использованием блочного принципа, позволяющего всю моделируемую систему разбить на ряд подсистем, связанных между собой незначительным числом обобщенных взаимодействий и допускающих самостоятельное моделирование с использованием своего собственного математического аппарата (в частности, для подсистем, механизм функционирования которых неизвестен, возможно построение регрессионных или самоорганизующихся моделей). Такой подход позволяет также достаточно просто конструировать, путем замены отдельных блоков, новые имитационные модели. Если имитационные модели реализуются без блочного принципа, можно говорить о квазиимитационном моделировании. Имитации, в которых все коэффициенты определены по результатам экспериментов над конкретной экосистемой, называются портретными моделями.
Методы построения имитационных моделей чаще всего основываются на классических принципах системной динамики Дж. Форрестера. Создание имитационных моделей сопряжено с большими затратами. Так, модель ELM (злаковниковой экосистемы, используемой под пастбище) строилась 7 лет с годовым бюджетом программы в 1,5 млн. долл. около 100 научными сотрудниками из более 30 научных учреждений США, Австралии и Канады (Розенберг).
Построение имитационной модели может служить организующим началом любого серьезного экологического исследования. Хотя частная экосистема реки или озера и является элементарной ячейкой биосферы, ее математическая модель описывается системами уравнений того же порядка сложности, что и вся биосфера в целом, поскольку требует учета такого же большого количества переменных и параметров, описывающих функционирование отдельных подсистем и элементов (только на ином масштабном уровне). Поэтому исследователи ищут разумный компромисс: при составлении моделей многие параметры берутся агрегировано, допускаются разного рода аппроксимации и гипотезы, многие коэффициенты принимаются "по аналогии" с другими объектами и т.д. Поскольку среди допущений и предположений трудно выбрать наилучшее, снижается точность и познавательная ценность моделей, а, следовательно, их практическая применимость.
В настоящее время можно отметить два направления развития имитационного моделирования, где предлагаются достаточно конструктивные методы компенсации априорной неопределенности, проистекающей от нестационарного и стохастического характера экологических систем. Первое направление оформилось в виде методики решения задач идентификации и верификации как последовательного процесса определения и уточнения численных значений коэффициентов модели. Второе направление связано со стратегией поиска скрытых закономерностей моделируемой системы и интеграции их в модель.
Приведем краткий обзор развития моделей этого класса, воспользовавшись материалами Л.Я. Ащепковой.
Попытки моделирования динамики популяций предпринимаются давно. Модель конкуренции (уравнения Лотки–Вольтера, 1925-26 гг.) – классический пример аналитической модели, позволяющей объяснить и проанализировать возможные исходы межвидовой конкуренции. Однако, если модели типа "хищник–жертва" в частных случаях обнаруживали совпадение с данными натурных наблюдений, то значительно хуже обстояло дело с взаимодействием организмов и окружающей среды. Сначала появились частные модели взаимодействия биоты с такими отдельными факторами, как солнечная радиация, температура, потом – модели взаимодействия организмов с абстрактными "ресурсами".
На примере модели динамики планктона Северного моря, Дж. Стил, используя простые представления о трофических цепях, описал модели комбинирования различных гипотез о пищевом поведении, оставляя минимум внимания особенностям пространственного распределения организмов. Дж. Дюбо для того же Северного моря фокусировал внимание на причинах формирования пространственной неоднородности, учитывая два фактора: трофические отношения между фито- и зоопланктоном и скорость перемещения потоков воды в процессе диффузии.
Одной из первых математических моделей водных экосистем, в основе которых лежал энергетический принцип, была модель, созданная Г.Г. Винбергом и С.А. Анисимовым. В.В. Меншуткин и А.А. Умнов развили идеи Г.Г. Винберга, введя в рассмотрение цикл биогенных элементов. Модель экосистемы в каждый момент времени определялась следующим набором переменных: концентрации фито- и зоопланктона, рыб-плантофагов, бактерий и растворенного в воде органического вещества, а внешними факторами явились солнечная энергия, кислородно-углекислотный обмен с атмосферой и поступление аллохтонных веществ. Выходными параметрами модели были вылов рыбы, отложение в ил и вынос органических и неорганических ингредиентов, а также рассеянная энергия как результат трат на обмен.
Информация о работе Лекции по "Экологическому моделированию"