Методы закрытия речевых сигналов в телефонных линиях. Скремблирование

Автор работы: Пользователь скрыл имя, 17 Сентября 2011 в 10:31, курсовая работа

Описание

За достаточно длительный период своего развития человечество накопило огромный опыт и массу знаний о способах и средствах ведения разведки. Естественно, вначале этот опыт носил в основном военный характер, но затем он нашел благодатную почву для “мирной” реализации на ниве промышленного шпионажа.

Содержание

1. Введение. Актуальность проблемы.
2. Основные методы и типы систем закрытия речевых сообщений:
1. аналоговые скремблеры;
2. цифровые скремблеры;
3. Критерии оценки систем закрытия речи. Таблица характеристик некоторых. скремблеров и вокодеров.
4. Тенденции развития систем закрытия речи.

Работа состоит из  1 файл

курсовая.doc

— 438.50 Кб (Скачать документ)

    Основной  целью при разработке устройств  цифрового закрытия речи является сохранение тех ее характеристик, которые наиболее важны для восприятия слушателем. Одним из путей является сохранение формы речевого сигнала. Это направление применяется в широкополосных цифровых системах закрытия речи. Однако использование свойств избыточности информации, содержащейся в человеческой речи, более эффективно. Это направление разрабатывается в узкополосных цифровых системах закрытия речи.

    Ширину  спектра речевого сигнала можно  считать приблизительно равной 3,3 кГц, а для достижения хорошего качества восприятия необходимое соотношение сигнал/шум должно составлять 30 дБ. Тогда, согласно теории Шеннона, требуемая скорость передачи дискретизированной речи будет соответствовать величине 33 кбит/с.

    С другой стороны, структура речевого сигнала представляет собой последовательность звуков (фонем), передающих информацию. Поскольку в английском языке около 40 фонем, а в немецком - 70, то для представления фонетического алфавита потребуется 6-7 бит. Максимальная скорость произношения не превышает 10 фонем в секунду. Следовательно, минимальная скорость передачи основной технической информации речи не ниже 60-70 бит/с.

    Сохранение  формы сигнала требует высокой  скорости передачи и, соответственно, использования широкополосных каналов  связи. Например, при импульсно-кодовой модуляции (ИКМ), используемой в большинстве телефонных сетей, необходима скорость передачи, равная 64 кбит/с. В случае применения адаптивной дифференциальной ИКМ она понижается до 32 кбит/с и ниже. Для узкополосных каналов, не обеспечивающих такие скорости передачи, требуются устройства, исключающие избыточность речи до ее передачи. Снижение информационной избыточности речи достигается параметризацией речевого сигнала, при которой характеристики речи, существенные для восприятия, сохраняются.

    Таким образом, правильное применение методов  цифровой передачи речи с высокой  информационной эффективностью является крайне важным направлением разработок устройств цифрового закрытия речевых  сигналов. В таких системах устройство кодирования речи (вокодер), анализируя форму речевого сигнала, производит оценку параметров переменных компонент модели генерации речи и передает эти параметры в цифровой форме по каналу связи на синтезатор, где согласно этой модели по принятым параметрам синтезируется речевое сообщение. В таких моделях речевой сигнал представляется в виде нестационарного процесса с ограниченной скоростью изменения параметров из-за механической инерции голосовых органов человека. На малых интервалах времени (до 30 мс) параметры сигнала могут рассматриваться как постоянные. Чем короче интервал анализа, тем более точно может быть представлена динамика речи, но при этом требуется более высокая скорость передачи данных. В большинстве практических случаев используются 20-миллисекундные интервалы и достигается скорость передачи данных 2400 бит/с.

    Наиболее  распространенными типами вокодеров  являются полосные и с линейным предсказанием. Целью любого вокодера является передача параметров, характеризующих речь и имеющих низкую информационную скорость. Полосный вокодер достигает этого путем передачи амплитуды нескольких частотных полос речевого спектра. Каждый полосовой фильтр такого вокодера возбуждается при попадании энергии речевого сигнала в его полосу пропускания. Так как спектр речевого сигнала изменяется относительно медленно, набор амплитуд выходных сигналов фильтров образует пригодную для вокодера основу. В синтезаторе параметры амплитуды каждого канала управляют коэфициентами усиления фильтра, характеристики которого подобны характеристикам фильтра анализатора. Таким образом, структура полосного вокодера базируется на двух блоках фильтров - для анализа и синтеза. Увеличение числа каналов улучшает разборчивость, но при этом требуется большая скорость передачи. Компромиссным решением обычно становится выбор 16-20 каналов при скорости передачи около 2400 бит/с.

    Полосовые фильтры в цифровом исполнении строятся на базе аналоговых фильтров Баттерворта, Чебышева, эллиптических и других. Каждый 20-миллисекундный отрезок времени кодируется 48 битами, из них 6 бит отводится на информацию об основном тоне, один бит на информацию "тон-шум", характеризующую наличие или отсутствие вокализованного участка речевого сигнала, остальные 41 бит описывают значения амплитуд сигналов на выходе полосовых фильтров.

    Существуют  различные модификации полосного  вокодера, приспособленные для каналов  с ограниченной полосой пропускания. При отсутствии жестких требований на качество синтезированной речи удается  снизить количество бит передаваемой информации с 48 до 36 на каждые 20 миллисекунд, что обеспечивает снижение скорости до 1800 бит/с. Уменьшение скорости передачи до 1200 бит/с возможно в случае передачи каждого второго кадра речевого сигнала и в нем дополнительной информации о синтезе пропущенного кадра. Потери в качестве синтезированной речи от таких процедур не слишком велики, достоинством же является снижение скорости передачи сигнала.

    Наибольшее  распространение среди систем цифрового  кодирования речи с последующим шифрованием получили системы, основным узлом которых являются вокодеры с линейным предсказанием речи (ЛПР).

    Математическое  представление модели цифрового  фильтра, используемого в вокодере с линейным предсказанием, имеет вид кусочно-линейной аппроксимации процесса формирования речи с некоторыми упрощениями, а именно: каждый текущий отсчет речевого сигнала является линейной функцией Р предыдущих отсчетов. Несмотря на несовершенство такой модели, ее параметры обеспечивают приемлемое представление речевого сигнала. В вокодере с линейным предсказанием анализатор осуществляет минимизацию ошибки предсказания, представляющей собой разность текущего отсчета речевого сигнала и средневзвешенной суммы Р предыдущих отсчетов, где Р - порядок предсказания, а весовые коэффициенты являются коэффициентами линейного предсказания. Оценка качества проводится по минимуму среднеквадратической величины ошибки предсказания. Существует несколько методов минимизации ошибки. Общим для всех является то, что при оптимальной величине коэффициентов предсказания спектр сигнала ошибки приближается к белому шуму и соседние значения ошибки имеют минимальную корреляцию. Известные методы делятся на две категории: последовательные и боковые, которые получили наибольшее распространение.

    В вокодере с линейным предсказанием  речевая информация передается тремя параметрами: амплитудой, решением "тон/шум" и периодом основного тона для вокализованных звуков. Так, согласно федеральному стандарту США, период анализируемого отрезка речевого сигнала составляет 22,5 мс, что соответствует 180 отсчетам при частоте дискретизации 8 кГц. Кодирование в этом случае осуществляется 54 битами, что соответствует скорости передачи 2400 бит/с. При этом 41 бит отводится на кодирование десяти коэффициентов предсказания, 5 - на кодирование величины амплитуды, 7 - на передачу периода основного тона, и 1 бит определяет решение "тон/шум". При осуществлении подобного кодирования предполагается, что все параметры независимы, однако в естественной речи параметры коррелированы и возможно значительное снижение скорости передачи данных без потери качества, если правило кодирования оптимизировано с учетом зависимости всех параметров. Такой подход известен под названием векторного кодирования. Его применение к вокодеру с линейным предсказанием позволит снизить скорость передачи данных до 800 бит/с и менее с очень малой потерей качества.

    Основной  особенностью использования систем цифрового закрытия речевых сигналов является необходимость использования  модемов. В принципе возможны следующие  подходы при проектировании систем цифрового закрытия речевых сигналов:

    1) цифровая последовательность параметров  речи с выхода вокодерного  устройства подается на вход  шифратора, где подвергается преобразованию  по одному из криптографических алгоритмов, затем поступает через модем в канал связи, на приемной стороне которого осуществляются обратные операции по восстановлению речевого сигнала, в которых задействованы модем и дешифратор (см. рис.1.D). Шифрующие/дешифрующие функции обеспечиваются либо в отдельных устройствах, либо в программно-аппаратной реализации самого вокодера;

    2) шифрующие/дешифрующие функции обеспечиваются  самим модемом (так называемый  засекречивающий модем) обычно по известным криптографическим алгоритмам типа DES и другим. Цифровой поток, несущий информацию о параметрах речи, с выхода вокодера непосредственно поступает на такой модем. Организация связи по каналу аналогична вышеприведенной. 

 

    Критерии  оценки систем закрытия речи

 

    Существуют  четыре основных критерия, по которым оцениваются характеристики устройств закрытия речевых сигналов, а именно: разборчивость речи, узнаваемость говорящего, степень закрытия и основные технические характеристики системы.

    Приемлемым  или коммерческим качеством восстановленной  на приемном конце речи считается  такое, когда слушатель может без труда определить голос говорящего и смысл произносимого сообщения. Помимо этого, под хорошим качеством передаваемого речевого сигнала подразумевается и возможность воспроизведения эмоциональных оттенков и других специфических эффектов разговора, присущих беседам tet-a-tet.

    Влияющие  на качество восстановленного речевого сигнала параметры узкополосных закрытых систем передачи речи определяются способами кодирования, методами модуляции, воздействием шума, инструментальными ошибками и условиями распространения. Шумы и искажения воздействуют на характеристики каждой компоненты системы по-разному, и снижение качества, ощущаемое пользователем, происходит от суммарного эффекта понижения характеристик отдельных компонент. Существующие объективные методы оценки качества речи и систем не применимы для сравнения характеристик узкополосных дискретных систем связи, в которых речевой сигнал преобразуется в систему параметров на передающей стороне, передается по каналу связи, а затем синтезируется в речевой сигнал в приемнике.

    Существующие  субъективные методы измерений разборчивости  и естественности отличаются значительной трудоемкостью, поскольку в этом деле многое зависит от используемого словаря, выбранного канала связи, диалекта, возраста и эмоционального состояния испытуемых дикторов. Поэтому проведение измерений для получения статистически надежных и повторяемых оценок параметров системы при изменяющихся условиях требует больших затрат.

    При использовании радиоканалов эти  трудности еще более возрастают из-за неопределенности условий распространения, и достичь повторяемости результатов невозможно без применения моделей радиоканалов.

    Для дуплексных систем дополнительное влияние  на качество оказывает временная  задержка сигнала, вносимая речевым скремблером или шифратором.

    Поскольку основным показателем секретности  передаваемых речевых сообщений  является его неразборчивость при  перехвате потенциальными подслушивающими  лицами, сравнение по степеням защиты является определяющим моментом при выборе пользователем конкретной системы закрытия речи. В основном распределение по уровням закрытия речевых сообщений соответствует ранее приведенной диаграмме на рис.2.

    Как правило, аналоговые скремблеры используются там, где применение цифровых систем закрытия речи затруднено из-за наличия возможных ошибок передачи (наземные линии связи с плохими характеристиками или каналы дальней радиосвязи), обеспечивают тактический уровень защиты и хорошо предохраняют переговоры от посторонних "случайных ушей", имеющих ограниченные ресурсы, будь то соседи или сослуживцы. Для таких применений годятся системы со статическим закрытием, то есть осуществляющие шифрование по фиксированному ключу.

    Если  же необходимо сохранить конфиденциальность информации от возможных конкурентов, обладающих достаточным техническим и специальным оснащением, то нужно применять аналоговые скремблеры среднего уровня закрытия с динамически меняющимся в процессе разговора ключом. Естественно, что эти системы будут дороже, чем системы закрытия с фиксированным ключом, однако они настолько осложнят работу неприятелей по разработке дешифрующего алгоритма, что время, потраченное на это, значительно обесценит добытую информацию из перехваченного сообщения.

    Поскольку в таких устройствах закрытия, как правило, перед началом сообщения передается синхропоследовательность, содержащая часть дополнительной информации о ключе именно этого передаваемого сообщения, у противника имеется только один шанс попытаться его раскрыть, перебрав широкое множество ключевых установок, и, если ключи меняются ежедневно, то даже при известном алгоритме преобразования речи неприятелю придется перебрать много тысяч вариантов в поисках истинной ключевой подстановки.

    В случае, если есть предположение, что  в целях добывания крайне интересующей его информации противник может воспользоваться услугами высококвалифицированных специалистов и их техническим арсеналом, то для того, чтобы быть уверенным в отсутствии утечки информации, необходимо применять системы закрытия речи, обеспечивающие стратегическую (самую высокую) степень защиты. Это могут обеспечить лишь устройства дискретизации речи с последующим шифрованием и новый тип аналоговых скремблеров. Последние используют методы преобразования аналогового речевого сигнала в цифровую форму, затем применяют методы криптографического закрытия, аналогичные тем, что используются для закрытия данных, после чего результирующее закрытое сообщение преобразуется обратно в аналоговый сигнал и подается в линию связи. Для раскрытия полученного сигнала на приемном конце производятся обратные преобразования. Эти новейшие гибридные устройства легко адаптируются к существующим коммуникационным сетям и предлагают значительно более высокий уровень защиты речевых сообщений, чем традиционные аналоговые скремблеры, с сохранением всех преимуществ последних в разборчивости и узнаваемости восстановленной речи.

    Следует отметить, что в системах засекречивания речи, основанных на шифре перестановки N речевых элементов, общее число ключей-перестановок равно N!. Однако это число не отражает реальной криптографической стойкости системы из-за избыточности информации, содержащейся в речевом сигнале, а также из-за разборчивости несовершенным образом переставленной в инвертированной речи. Поэтому криптоаналитику противника часто необходимо опробовать лишь К<<N! случайных перестановок для вскрытия речевого кода. Этот момент следует учитывать при выборе надежной системы аналогового скремблирования.

Информация о работе Методы закрытия речевых сигналов в телефонных линиях. Скремблирование