Автор работы: Пользователь скрыл имя, 27 Декабря 2010 в 02:53, курсовая работа
Шкалирование информации состоит в том, чтобы выявить структуру исследуемого множества стимулов. Под выявлением структуры понимается выделение набора основных факторов, по которым различаются стимулы, и описание каждого из стимулов в терминах этих факторов. Процедура построения структуры опирается на анализ объективной или субъективной информации о близостях между стимулами либо информации о предпочтениях на множестве стимулов. В случае анализа субъективных данных решаются одновременно две задачи. С одной стороны, выявляется объективная структура субъективных данных, с другой — определяются факторы, влияющие на процесс принятия решения.
ВВЕДЕНИЕ 3
1 КОМПЬЮТЕРНАЯ МЕТОДИКА Т. ЛИРИ 4
2 ПРОБЛЕМЫ АВТОМАТИЗАЦИИ ИНТЕРПРЕТАЦИИ ДАННЫХ ОПРОСНИКА Т. ЛИРИ 8
3 ИЗВЛЕЧЕНИЕ ЗНАНИЙ 10
4 КОНЦЕПТУАЛЬНЫЙ АНАЛИЗ ЗНАНИЙ 12
ЗАКЛЮЧЕНИЕ 15
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 16
Приложение А 17
После анализа механизма шкалирования легко понять, какие же данные следует считать хорошими или, как принято говорить, хорошо структурированными. Для кластерного анализа хорошо структурированной является матрица, которая может быть приведена к блочно-диагональному виду. Иными словами, если имеется группа похожих (или сильно связанных) между собой стимулов, то все стимулы этой группы должны быть непохожими на остальные (или слабо связаны). Тогда структура может быть представлена изолированными группами сходных между собой стимулов. В многомерном шкалировании ввиду непрерывности измерений требования на входную информацию более слабые. Если два стимула сходны между собой, то они должны иметь близкие профили сходств со всеми другими стимулами. Это является необходимым условием для их адекватного представления в пространстве небольшого числа измерений.
Хотя модель многомерного шкалирования достаточно проста и интуитивно понятно, какого характера решение следует ожидать, попытки построить конфигурацию точек вручную могут привести к успеху лишь при очень небольшом количестве стимулов и хорошо структурированной матрице близостей. В общем случае исследователь вынужден прибегнуть к помощи вычислительной машины, а для работы на ней необходимо алгоритмизировать процесс решения задачи. Иногда трудно вручную построить конфигурацию даже для небольшого набора стимулов. Примером такого множества могут служить равнояркие цветовые стимулы, равномерно распределенные по длине волны. Анализ матрицы субъективных различий не позволяет выделить ключевые стимулы, различия между которыми могли бы быть положены в основу всей структуры. Обработка этих данных на ЭВМ приводит к представлению стимулов на окружности — «цветовом круге»; действительно, с точки зрения такой структуры все стимулы равноценны.
Меры различия. Вывод об экспериментальном эффекте может быть сделан как на основе установления значимой связи между изменениями НП и ЗП, т.е. путем использования мер связи, так и путем установления значимых различий в ЗП между экспериментальным и контрольным условиями, т.е. путем использования мер различий. Выбор тех или иных статистических критериев определяется обоснованным обсуждением адекватности их с точки зрения возможных соотнесений разных видов представления эмпирических результатов и предположений о каузальной зависимости. Если выбраны меры связи, то далее необходимы решения о выборе коэффициента корреляции, соответствующего шкалам измерения психологических переменных и плану соотнесения ЗП с экспериментальными условиями. В случае если выбраны меры различий, то также предполагается ряд решений об их соответствии плану сбора данных и типу показателей ЗП.
При установлении связей между переменными, измеренными в разных шкалах, требуются решения об их преобразованиях (приведение к одному виду, например, на основе их нормирования). Эти и другие решения принимаются не на основе знаний по статистике, а на основе содержательных переходов от целей исследования к поиску процедур, соответствующих установлению необходимых психологических шкал и способов количественной оценки полученных эффектов.
Выявление
ковариации или корреляции переменных
для выполнения второго условия
причинного вывода не означает, что
отношение между НП и ЗП должно
статистически оцениваться
Статистические решения об отвержении нуль-гипотез следует рассматривать только в качестве одного из этапов реализации достоверных выводов об установленной зависимости на основе полученных эмпирических данных. Формальное планирование учитывает этот этап следующим образом. Величина полученного в эксперименте различия (в сравниваемых рядах показателей ЗП) оценивается с точки зрения предполагаемого минимального эффекта, который при заданном уровне значимости (вероятности ошибок первого рода), а также необходимом для этого числе проб или испытуемых (n – величина выборки) принимается в качестве критериального при заключении о неслучайном характере различий в эмпирических выборках показателей.
Статистические
решения связаны с
Экспериментальная
гипотеза может включать предположения
о функциональных отношениях между
НП и ЗП как количественных зависимостях.
Статистические решения осуществляются
и для сравнения качественных уровней
НП по соответствующим им показателям
ЗП. Иными словами, сама по себе количественная
оценка основного результата действия
НП не означает, что психологическая гипотеза
является количественной.
Парадоксальная возможность восстановления количественной структуры из числа качественных данных связана с тем обстоятельством, что число пар точек и, следовательно, число порядковых ограничений на их расстоянии возрастает приблизительно как квадрат числа определяемых количественных координат точек. Такие методы называются «неметрическими», поскольку в этом случае используются только порядковые свойства входных данных. Однако выход может достигать большой метрической точности и всегда будет метричным в смысле соответствия аксиомам расстояния.
Такое многомерное неметрическое
шкалирование уже достигло в основном
современного уровня, когда были введены
стандартные методы градиента с целью
минимизировать эксплицитно определяемую
сумму квадратов как меру отклонения от
монотонной зависимости расстояний от
субъективных близостей (мера Крускала
или «стресс»):
где dij - расстояния между точками на любой конкретной интерации в терминах n•k координат xik точек в k–мерном эвклидовом пространстве; они определяются с помощью обычной формулы расстояния:
dij — числа, которые монотонны с данными сходствами Sij и минимизируют S — «стресс» (меру Крускала) относительно пространственных расстояний dij на каждой итерации.
При
заданной пробной размерности
Было
разработано несколько
Модель индивидуальных различий DISC У. Марстона основывается на описании наблюдаемого поведения, т.е. того, как человек действует и содержит два очень полезных инструмента:
Марстон выбрал 2 критерия, на основе которых он построил свою модель:
Если
представить эти критерии в виде
осей, то при их пересечении получается
4 базовых типа:
Рисунок
1
Доминирование (Dominance):
Влияние (Influence):
Постоянство (Steadiness):
Соответствие (Compliance):
3. Построение математических моделей с помощью компьютера
Для использования ЭВМ при решении прикладных задач прежде всего прикладная задача должна быть "переведена" на формальный математический язык, т.е. для реального объекта, процесса или системы должна быть построена его математическая модель.
Математические модели в количественной форме, с помощью логико-математических конструкций, описывают основные свойства объекта, процесса или системы, его параметры, внутренние и внешние связи.
Для построения математической модели необходимо:
1. тщательно проанализировать реальный объект или процесс;
2. выделить его наиболее существенные черты и свойства;
3. определить переменные, т.е. параметры, значения которых влияют на основные черты и свойства объекта;