Автор работы: Пользователь скрыл имя, 09 Января 2012 в 19:01, курсовая работа
Под системой массового обслуживания (СМО) понимают динамическую систему, предназначенную для эффективного обслуживания потока заявок (требований на обслуживание) при ограничениях на ресурсы системы.
Введение.......................................................................................................... 2
1. Основы теории массового обслуживания.................................................. 3
1.1 Понятие случайного процесса.................................................................. 3
1.2 Марковский случайный процесс.............................................................. 4
1.3 Потоки событий......................................................................................... 6
1.4 Уравнения Колмогорова для вероятностей состояний. Финальные вероятности состояний......................................................................................................... 9
1.5 Задачи теории массового обслуживания............................................... 13
1.6 Классификация систем массового обслуживания.................................. 15
2. Системы массового обслуживания с ожиданием..................................... 16
2.1 Одноканальная СМО с ожиданием........................................................ 16
2.2 Многоканальная СМО с ожиданием...................................................... 25
3. Замкнутые СМО........................................................................................ 37
Решение задачи............................................................................................. 45
Заключение.................................................................................................... 50
Список литературы....................................................................................... 51
и т. д.
Среднее число занятых каналов найдем, разделив абсолютную пропускную способность СМО А= =0,8 на интенсивность обслуживания =0,5:
Вероятность отсутствия очереди у АЗС будет:
Среднее число машин в очереди:
Среднее число машин на АЗС:
Среднее время ожидания в очереди:
Среднее время пребывания машины на АЗС:
СМО с ограниченным временем ожидания. Ранее рассматривались системы с ожиданием, ограниченным только длиной очереди (числом m-заявок, одновременно находящихся в очереди). В такой СМО заявка, разраставшая в очередь, не покидает ее, пока не дождется обслуживания. На практике встречаются СМО другого типа, в которых заявка, подождав некоторое время, может уйти из очереди (так называемые «нетерпеливые» заявки).
Рассмотрим
СМО подобного типа, предполагая,
что ограничение времени
Предположим, что имеется n-канальная СМО с ожиданием, в которой число мест в очереди не ограничено, но время пребывания заявки в очереди является некоторой случайной величиной со средним значением , таким образом, на каждую заявку, стоящую в очереди, действует своего рода пуассоновский «поток уходов» с интенсивностью:
Если этот поток пуассоновский, то процесс, протекающий в СМО, будет марковским. Найдем для него вероятности состояний. Нумерация состояний системы связывается с числом заявок в системе — как обслуживаемых, так и стоящих в очереди:
нет очереди:
— все каналы свободны;
— занят один канал;
— заняты два канала;
— заняты все n-каналов;
есть очередь:
— заняты все n-каналов, одна заявка стоит в очереди;
— заняты все n-каналов, r-заявок стоят в очереди и т. д.
Граф состояний и переходов системы показан на рис. 23.
Рис. 23. СМО с ограниченным временем ожидания
Разметим этот граф, как и раньше; у всех стрелок, ведущих слева направо, будет стоять интенсивность потока заявок . Для состояний без очереди у стрелок, ведущих из них справа налево, будет, как и раньше, стоять суммарная интенсивность потока обслуживании всех занятых каналов. Что касается состояний с очередью, то у стрелок, ведущих из них справа налево, будет стоять суммарная интенсивность потока обслуживания всех n-каналов плюс соответствующая интенсивность потока уходов из очереди. Если в очереди стоят r-заявок, то суммарная интенсивность потока уходов будет равна .
Как видно из графа, имеет место схема размножения и гибели; применяя общие выражения для предельных вероятностей состояний в этой схеме (используя сокращенные обозначения , запишем:
(24)
Отметим некоторые особенности СМО с ограниченным ожиданием сравнительно с ранее рассмотренными СМО с «терпеливыми» заявками.
Если длина очереди не ограничена и заявки «терпеливы» (не уходят из очереди), то стационарный предельный режим существует только в случае (при соответствующая бесконечная геометрическая прогрессия расходится, что физически соответствует неограниченному росту очереди при ).
Напротив, в
СМО с «нетерпеливыми»
Для СМО с «нетерпеливыми» заявками понятие «вероятность отказа» не имеет смысла — каждая заявка становится в очередь, но может и не дождаться обслуживания, уйдя раньше времени.
Относительная пропускная способность, среднее число заявок в очереди. Относительную пропускную способность q такой СМО можно подсчитать следующим образом. Очевидно, обслужены будут все заявки, кроме тех, которые уйдут из очереди досрочно. Подсчитаем, какое в среднем число заявок покидает очередь досрочно. Для этого вычислим среднее число заявок в очереди:
(25)
На каждую из этих заявок действует «поток уходов» с интенсивностью . Значит, из среднего числа -заявок в очереди в среднем будет уходить, не дождавшись обслуживания, -заявок в единицу времени и всего в единицу времени в среднем будет обслуживаться -заявок. Относительная пропускная способность СМО будет составлять:
Среднее число занятых каналов по-прежнему получаем, деля абсолютную пропускную способность А на :
(26)
Среднее число заявок в очереди. Соотношение (26) позволяет вычислить среднее число заявок в очереди , не суммируя бесконечного ряда (25). Из (26) получаем:
,
а входящее в эту формулу среднее число занятых каналов можно найти как математическое ожидание случайной величины Z, принимающей значения 0, 1, 2,..., n с вероятностями , :
.
В заключение
заметим, что если в формулах (24) перейти
к пределу при
(или, что то же, при
), то при
получатся формулы (22), т. е. «нетерпеливые»
заявки станут «терпеливыми».
3.
Замкнутые СМО
До сих пор мы рассматривали системы, в которых входящий поток никак не связан с выходящим. Такие системы называются разомкнутыми. В некоторых же случаях обслуженные требования после задержки опять поступают на вход. Такие СМО называются замкнутыми. Поликлиника, обслуживающая данную территорию, бригада рабочих, закрепленная за группой станков, являются примерами замкнутых систем.
В замкнутой
СМО циркулирует одно и то же конечное
число потенциальных
Пусть n - число каналов обслуживания, s - число потенциальных заявок, n<s, - интенсивность потока заявок каждого потенциального требования, μ - интенсивность обслуживания:
ρ= .
Вероятность простоя системы определяется формулой
Р0= .
Финальные вероятности состояний системы:
Pk= при k<n, Pk= при .
Через эти вероятности выражается среднее число занятых каналов
=P1+2P2+…+n(Pn+Pn+1+…+Ps) или
=P1+2P2+…+(n-1)Pn-1+n(1-P0-P1-
Через находим абсолютную пропускную способность системы:
A= ,
а также среднее число заявок в системе
М=s-
=s-
.
Пример 1. На вход трехканальной СМО с отказами поступает поток заявок с интенсивностью =4 заявки в минуту, время обслуживания заявки одним каналом tобсл=1/μ =0,5 мин. Выгодно ли с точки зрения пропускной способности СМО заставить все три канала обслуживать заявки сразу, причем среднее время обслуживания уменьшается втрое? Как это скажется на среднем времени пребывания заявки в СМО?
Решение. Находим вероятность простоя трехканальной СМО по формуле
ρ = /μ =4/2=2, n=3,
Р0= = = 0,158.
Вероятность отказа определяем по формуле:
Ротк=Рn= =
Pотк= 0,21.
Относительная пропускная способность системы:
Робсл=1-Ротк 1-0,21=0,79.
Абсолютная пропускная способность системы:
А= Робсл 3,16.
Среднее число занятых каналов определяем по формуле:
1,58, доля каналов, занятых
q= 0,53.
Cреднее
время пребывания заявки в
СМО находим как вероятность
того, что заявка принимается
к обслуживанию, умноженную на
среднее время обслуживания: tС
Объединяя
все три канала в один, получаем
одноканальную систему с
Р0= = =0,6,
вероятность отказа:
Ротк=ρ Р0= =0,4,
относительная пропускная способность:
Робсл=1-Ротк=0,6,
абсолютная пропускная способность:
А= Робсл=2,4.
Среднее время пребывания заявки в СМО:
tСМО=Робсл = =0,1 мин.
В результате объединения каналов в один пропускная способность системы снизилась, так как увеличилась вероятность отказа. Среднее время пребывания заявки в системе уменьшилось.
Пример 2. На вход трехканальной СМО с неограниченной очередью поступает поток заявок с интенсивностью =4 заявки в час, среднее время обслуживания одной заявки t=1/μ=0,5 ч. Найти показатели эффективности работы системы.
Для рассматриваемой системы n=3, =4, μ=1/0,5=2, ρ= /μ=2, ρ/n=2/3<1. Определяем вероятность простоя по формуле:
Р = .
P0= =1/9.
Среднее число заявок в очереди находим по формуле:
L= .
L= = .
Среднее время ожидания заявки в очереди считаем по формуле:
t= .
t= = 0,22 ч.
Среднее время пребывания заявки в системе:
Т=t+
0,22+0,5=0,72.
Пример 3. В парикмахерской работают 3 мастера, а в зале ожидания расположены 3 стула. Поток клиентов имеет интенсивность =12 клиентов в час. Среднее время обслуживания tобсл=20 мин. Определить относительную и абсолютную пропускную способность системы, среднее число занятых кресел, среднюю длину очереди, среднее время, которое клиент проводит в парикмахерской.
Для данной задачи n=3, m=3, =12, μ=3, ρ=4, ρ/n=4/3. Вероятность простоя определяем по формуле:
Р0= .
P0= 0,012.
Вероятность отказа в обслуживании определяем по формуле
Ротк=Рn+m= .
Pотк=Pn+m 0,307.
Относительная пропускная способность системы, т.е. вероятность обслуживания:
Pобсл=1-Pотк 1-0,307=0,693.
Абсолютная пропускная способность:
А= Робсл 12 .
Среднее число занятых каналов:
.
Средняя длина очереди определяется по формуле:
L=
L= 1,56.
Среднее время ожидания обслуживания в очереди:
t= ч.
Среднее число
заявок в СМО:
M=L+ .
Среднее время пребывания заявки в СМО:
Т=М/
0,36 ч.
Пример 4. Рабочий обслуживает 4 станка. Каждый станок отказывает с интенсивностью =0,5 отказа в час, среднее время ремонта tрем=1/μ=0,8 ч. Определить пропускную способность системы.
Эта задача
рассматривает замкнутую СМО, μ
Информация о работе СМО с ограниченным временем ожидания. Замкнутые СМО