Автор работы: Пользователь скрыл имя, 13 Мая 2012 в 22:47, курсовая работа
По аналогии с плоскостью в пространстве Евклида имеется только два типа поверхностей, которые могут без деформации передвигаться сами по себе, так, чтобы каждая точка поверхности совмещалась с любой другой ее точкой и притом, чтобы направление любой касательной к поверхности в первой точке совместилось с направлением любой касательной во второй точке. Такими поверхностями являются плоскости и сферы.
Введение 2
ГЛАВА 1. Понятие об эллиптической геометрии Римана 2
ГЛАВА 2. Сферическая геометрия и неевклидова геометрия Римана 2
2.1 Основные понятия неевклидовой геометрии Римана. Принцип двойственности 2
2.2 Примеры теорем неевклидовой геометрии Римана. Площадь треугольника и многоугольника 2
2.3 Трехмерная неевклидова геометрия Римана 2
Приложение
Заключение 2
Министерство образования Республики Беларусь
УО «Мозырский
государственный педагогический университет
имени И.П. Шамякина»
Кафедра
математики и МПМ
Курсовая
работа
Бернхард
Риман и эллиптическая геометрия
Выполнила:
студентка 4 курса 3 группы
физико-математического
факультета
Вабищевич Екатерина
Валерьевна
Научный
руководитель:
доцент
Кралевич И. Н
Оценка научного руководителя:
оценка,
дата сдачи, подпись
Итоговая оценка:
Мозырь 2012
Содержание
По аналогии с плоскостью в пространстве Евклида имеется только два типа поверхностей, которые могут без деформации передвигаться сами по себе, так, чтобы каждая точка поверхности совмещалась с любой другой ее точкой и притом, чтобы направление любой касательной к поверхности в первой точке совместилось с направлением любой касательной во второй точке. Такими поверхностями являются плоскости и сферы.
Геометрия на сфере имеет сходства с геометрией на плоскости. Поэтому теоремы и аксиомы плоскости аналогичны теоремам и аксиомам сферы.
В 1854 г. Риман в своей диссертации «О гипотезах, лежащих в основаниях геометрии» дал глубокое и богатое по содержанию обобщение идей Гаусса и Лобачевского. Эта работа была опубликована лишь в 1868 г. после смерти Римана. В этой работе он впервые дал построение n-мерного аналитического пространства, связал вопрос о движении с вопросом о постоянстве кривизны пространства, дал образец взаимного проникновения и органического слияния геометрии и анализа. Как один из частных результатов, Риманом была получена так называемая эллиптическая геометрия, отличная от геометрий Евклида и Лобачевского, в которой через точку, лежащую вне прямой, не проходит ни одной параллельной к этой прямой и все прямые замкнуты. Развитие идей Лобачевского Риманом приблизило создание тензорного исчисления и явилось этапом, подготовившим впоследствии почву для создания теории относительности.
Если в геометрии Евклида через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной, а в геометрии Лобачевского – две, то в эллиптической геометрии Римана вовсе не существует параллельных прямых. В эллиптической геометрии имеет место следующая аксиома:
Всякая пара прямых, лежащих в одной плоскости, пересекается (*).
Выясним,
какие основные изменения следует
внести в систему аксиом Гильберта,
чтобы получить аксиоматику эллиптической
геометрии, причем мы ограничимся лишь
двумерной эллиптической
Так как совокупность аксиом Гильберта групп I – IV совместима только с двумя аксиомами параллельности – Плейфера и Лобачевского, то ясно, что для построения системы аксиом эллиптической геометрии необходимо внести изменения в гильбертовские аксиомы первых четырех групп. Что касается аксиомы параллельности Гильберта V , то нетрудно видеть, что она остается в силе и в эллиптической геометрии, так как является прямым следствием указанной выше аксиомы (*) эллиптической геометрии об отсутствие параллелизма. Но в таком случае аксиому V надо исключить из перечня аксиом как излишнюю, а введенную вместо нее аксиому (*) целесообразно поместить в группу I аксиом соединения.
Таким образом, V группа аксиом отпадает, а группа I аксиом соединения эллиптической планиметрии будет состоять из следующих аксиом:
I₁. Через всякие две точки А и В проходит прямая.
I₂. Через две точки А и В проходит не более одной прямой.
I₃. На каждой прямой существуют по крайней мере две точки.
I₄. Всякая пара прямых, лежащих в одной плоскости, пересекается, т.е. имеет общую точку.
Какие же свойства эллиптической прямой вытекает из этой группы аксиом.
Эллиптическая прямая замкнута аналогично окружности. Из замкнутости прямой следует, что для трех точек прямой А, В и С понятие «лежать между» теряет определенный смысл, ибо каждая из них лежит между двумя другими, а потому понятие «лежать между» не характеризует их взаимного расположения.
Чтобы характеризовать взаимное расположение точек на эллиптической прямой, вводится другое основное понятие: «разделение двух пар точек». [3]
Отметим некоторые характерные особенности, имеющие место в эллиптической геометрии.
В отличие от геометрии Евклида и Лобачевского в эллиптической геометрии точка не делит прямую на два луча, а две точки А и В на прямой определяют не один, а два взаимно дополнительных отрезка.
Другое отличие заключается в том, что прямая в эллиптической плоскости не делит эту плоскость на две полуплоскости.
Однако можно утверждать, что две прямые разделяют плоскость на две части, каждая из которых образует угол. Таким образом, при точке О образуются два взаимно дополнительных угла, которые называются смежными углами. Если смежные углы равны, то они называются прямыми углами. Сумма смежных углов равна 2d.
Из
замкнутости эллиптической
Отметим
еще, что для всякой пары прямых в
эллиптической плоскости
Укажем
некоторые теоремы
Огромное
впечатление, произведенное на умы
математиков открытием
Когда говорим, что неевклидова геометрия Римана была известна задолго до открытия Лобачевского, имеем в виду тесную связь ее со сферической геометрией (геометрией на плоскости сферы). Основные факты сферической геометрии были основательно изучены еще в древности в связи с задачами астрономии. Поскольку поверхность земли приближенно имеет форму сферы, можно утверждать, что "земная геометрия" также является геометрией сферической (это реально ощущается при измерениях, затрагивающих значительные участки земной поверхности).
Роль прямых линий на сфере, т. е. самых коротких линий, соединяющих две точки сферы, играют так называемые большие окружности - сечения сферы плоскостями, проходящими через ее центр (см. Рис. 1). Углы между большими окружностями, как и углы между любыми другими линиями на сфере, принимаются равными углам между касательными к этим линиям в точках пересечения. Роль треугольников и многоугольников в сферической геометрии играют сферические треугольники и многоугольники, образованные дугами больших окружностей (см. Рис. 2).
Под расстоянием между двумя
Роль окружностей в
Большие и малые окружности сферы аналогичны прямым и окружностям на плоскости еще и в том отношении, что существуют движения сферы (повороты, Рис. 4), переводящие их в себя. Из этого ясно, что большие и малые окружности являются "однородными" линиями, т. е. во всех своих точках они устроены совершенно одинаково.
Однако между геометрией на сфере и геометрией на плоскости имеется и одно существенное различие. Мы знаем, что через каждые две точки плоскости проходит единственная прямая линия; другими словами, никакие две прямые не могут пересечься в двух точках. В противоположность этому каждые две большие окружности сферы пересекаются в двух (диаметрально противоположных) точках. Это обстоятельство резко отличает сферическую геометрию как от евклидовой геометрии, так и от неевклидовой геометрии Лобачевского. Для того чтобы устранить его, условимся называть "точкой" сразу пару диаметрально противоположных точек сферы. Полученный геометрический образ - сферу, понимаемую как множество пар диаметрально противоположных точек, - мы и назовем неевклидовой плоскостью Римана. Под "прямыми" неевклидовой геометрии Римана будем понимать большие окружности сферы (рассматриваемые как множество пар диаметрально противоположных точек). Условимся, далее, принимать за "расстояние" между двумя "точками" A и B плоскости Римана (не превосходящее четверти большой окружности) расстояние между соответствующими им точками сферы (так что расстояние между "точками", изображаемыми имеющимися на Рис. 5 парами и , равно дугам AB или , но не !). При таком определении полная длина "прямой" будет равна πr, но не 2πr (т. к., пройдя по "прямой" путь , равный πr, придем к "точке" , совпадающей с исходной "точкой" A, Рис. 6).
Под "углами" между "прямыми" неевклидовой геометрии Римана будем понимать углы между отвечающими этим "прямым" большими окружностями сферы. "Окружность" с центром Q и радиусом ρ естественно определить как множество "точек", удаленных от Q на "расстояние" ρ: на сфере она изображается малой окружностью (точнее, парой диаметрально противоположных малых окружностей, Рис. 7). "Движения" неевклидовой геометрии Римана можно описать как вращения сферы: так как каждое вращение сферы переводит две ее диаметрально противоположные точки снова в диаметрально противоположные точки, то "движение" представляет собой "точечное" преобразование плоскости Римана, переводящее каждую ее "точку" снова в "точку".
Информация о работе Бернхард Риман и эллиптическая геометрия