Бернхард Риман и эллиптическая геометрия

Автор работы: Пользователь скрыл имя, 13 Мая 2012 в 22:47, курсовая работа

Описание

По аналогии с плоскостью в пространстве Евклида имеется только два типа поверхностей, которые могут без деформации передвигаться сами по себе, так, чтобы каждая точка поверхности совмещалась с любой другой ее точкой и притом, чтобы направление любой касательной к поверхности в первой точке совместилось с направлением любой касательной во второй точке. Такими поверхностями являются плоскости и сферы.

Содержание

Введение 2
ГЛАВА 1. Понятие об эллиптической геометрии Римана 2
ГЛАВА 2. Сферическая геометрия и неевклидова геометрия Римана 2
2.1 Основные понятия неевклидовой геометрии Римана. Принцип двойственности 2
2.2 Примеры теорем неевклидовой геометрии Римана. Площадь треугольника и многоугольника 2
2.3 Трехмерная неевклидова геометрия Римана 2
Приложение
Заключение 2

Работа состоит из  1 файл

Курсач Катьки.doc

— 748.00 Кб (Скачать документ)

     Плоскость Римана можно также представлять себе как полусферу, склеенную весьма своеобразным образом - так, чтобы совпали диаметрально противоположные точки ограничивающей ее окружности (см. Рис. 8).

     Введем  теперь в пространстве прямоугольные координаты x, y, z с началом в центре рассматриваемой сферы. Для этого проведем через центр O сферы три взаимно перпендикулярные плоскости, например горизонтальную и две вертикальные (см. Рис. 9), и условимся характеризовать каждую точку пространства тремя числами x, y, z, абсолютные величины которых равны расстояниям этой точки от указанных плоскостей, а знаки положительны для точек, расположенных по одну сторону от соответственной плоскости, и отрицательны по другую сторону от этой плоскости.

      Так, например, координата x по абсолютной величине равна расстоянию от профильной вертикальной плоскости; она положительна, когда данная точка лежит справа от этой плоскости, и отрицательна, когда точка лежит слева. Координата y по абсолютной величине равна расстоянию от фронтальной вертикальной плоскости; она положительна для точек, расположенных перед этой плоскостью, и отрицательна для точек, расположенных за ней. Координата z по абсолютной величине равна расстоянию от горизонтальной плоскости; она положительна для точек, лежащих над этой плоскостью, и отрицательна для точек, лежащих под ней.

     Расстояние  OM от начала координат O до произвольной точки M с координатами x, y, z определяется соотношением

   (1) 

     В самом деле, обозначив через P основание  перпендикуляра, опущенного из точки M на горизонтальную плоскость, получим, в силу теоремы Пифагора, , а , откуда и следует, что . Если радиус нашей сферы равен r, то, в силу соотношения (1), координаты всех точек сферы удовлетворяют условию 

   (2) 

     "Точки"  неевклидовой плоскости Римана можно описать тем же уравнением, если только условиться считать, что M(x, y, z) и - это одна точка. 

     Расстояние  между двумя произвольными точками и пространства определяется по общей формуле 

     (3) 

(частным  случаем которой является формула  (1)), а угол φ между двумя  отрезками и , исходящими из точки O, - по формуле 

(4) 

     Для того чтобы убедиться в справедливости этих формул, напомним, что если a и b - два вектора с координатами и то 

 

(где  φ - угол между векторами a и b) и, в частности,

 

Формула (3) вытекает теперь из того, что (поскольку вектор имеет координаты ), а формула (4) - из того, что (поскольку векторы и имеют координаты и ).

     Если  и - точки нашей сферы, то обычное расстояние между ними измеряется по формуле (3). Расстояние же ω между этими точками, измеренное по большой окружности сферы, в соответствии с соглашениями, принятыми в сферической геометрии, равно углу φ между отрезками и , умноженному на радиус r сферы; поэтому, согласно соотношениям (2) и (4), это расстояние вычисляется по формуле 

 (5) 

     Для определения "расстояния" между  двумя "точками" и неевклидовой геометрии Римана можно воспользоваться той же формулой (5), где только надо учесть, что если ω окажется больше πr/2 (т. е. если угол φ будет тупым), то одну из точек , надо будет заменить центрально-симметричной (т. е. изменить знаки у чисел или у чисел ). Отсюда получаем следующую формулу для "расстояния" между двумя "точками" неевклидовой плоскости Римана:  

  (6)

2.1 Основные понятия неевклидовой геометрии Римана.                    Принцип двойственности

     Далее будем говорить лишь о неевклидовой геометрии Римана, в соответствии с чем откажемся от кавычек, указывающих на образы этой геометрии. При этом будем все время иметь в виду тесную связь рассматриваемой геометрии со сферической, позволяющую выводить все теоремы неевклидовой геометрии Римана из известных факторов сферической геометрии.

     Мы  не ставим перед собой задачи дать полный перечень аксиом геометрии Римана. Укажем только, что основная аксиома "через всякие две точки можно провести прямую и притом только одну" евклидовой геометрии сохраняет силу и в геометрии Римана; но наряду с ней здесь имеет место также и аксиома "всякие две прямые пересекаются в точке и притом только в одной" (на сфере всякие две большие окружности пересекаются в двух диаметрально противоположных точках, но после отождествления диаметрально противоположных точек эти две точки превращаются в одну). Из этой аксиомы вытекает, что на неевклидовой плоскости Римана выполняется V постулат Евклида: если на этой плоскости пересекаются всякие две прямые, то в том числе пересекаются и прямые, удовлетворяющие условию V постулата. Однако на неевклидовой плоскости Римана не выполняются аксиомы порядка евклидовой плоскости, так как в случае неевклидовой плоскости Римана каждую из трех точек прямой можно считать лежащей между двумя другими, подобно тому как это имеет место для трех точек евклидовой окружности. По этой причине на неевклидовой плоскости Римана не проходит приведенное выше доказательство теоремы Лежандра о том, что сумма углов треугольника не превосходит 180°. Напротив, из того, что сумма углов сферического треугольника больше 180° вытекает, что сумма углов любого треугольника на неевклидовой плоскости Римана больше 180°. Поэтому утверждение Лежандра о том, что V постулат эквивалентен предположению о равенстве суммы углов треугольника двум прямым углам, справедливо только при выполнении остальных аксиом геометрии Евклида - на неевклидовой плоскости Римана, на которой V постулат выполняется, но не выполняются аксиомы порядка геометрии Евклида, эти утверждения уже не эквивалентны.

     Если  на сфере у каждой большой окружности имеются два диаметрально противоположных полюса, то на неевклидовой плоскости Римана у каждой прямой имеется только один полюс. Прямую неевклидовой плоскости Римана можно рассматривать как множество всех точек, отстоящих от полюса на расстоянии πr/2. Если на Рис. 7 будем приближать расстояние ρ к πr/2, то увидим, что окружность радиуса ρ с центром Q будет приближаться к прямой с полюсом Q с двух сторон и в пределе окружность перейдет в прямую, пройденную не один, а два раза ("дважды взятую" прямую). Это соответствует тому, что длина окружности радиуса ρ, равная , при стремлении ρ к πr/2 стремится к 2πr, а длина прямой на неевклидовой плоскости Римана равна πr.

      Из свойств сферических окружностей  вытекает, что все перпендикуляры к одной прямой на неевклидовой плоскости Римана пересекаются в полюсе этой прямой. Далее, всякие две прямые на плоскости Римана обладают общим перпендикуляром, полюсом которого является точка пересечения этих прямых. Из этого вытекает, что при r = 1 угол между двумя прямыми a и b (см. Рис. 10) равен расстоянию между точками M и N их пересечения с их общим перпендикуляром c, а также равен расстоянию между полюсами A и B этих прямых. Последний факт показывает, что прямые неевклидовой плоскости Римана находятся во взаимно однозначном соответствии с ее точками - полюсами этих прямых, причем углы между прямыми равны расстояниям соответствующих точек. Таким образом, прямые неевклидовой плоскости Римана, если считать углы между ними расстояниями, образуют модель той же плоскости.

     Последнее обстоятельство можно пояснить также  следующим образом. Рассмотрим своеобразное "преобразование" неевклидовой плоскости Римана, сопоставляющее каждой прямой a этой плоскости определенную точку A - полюс прямой a, а каждой точке A - прямую a, полюсом которой является точка A (эта прямая называется полярой точки A). Если рассматривать множество точек и прямых неевклидовой плоскости Римана как множество пар точек и больших окружностей сферы, то это преобразование сводится к замене каждой большой окружности парой ее полюсов и каждой пары диаметрально противоположных точек - большой окружностью (являющейся "экватором" сферы, если наши точки принять за "северный полюс" и "южный полюс"). Радиус сферы примем равным 1; это равносильно такому выбору единицы измерения длин на плоскости Римана, при котором длина прямой оказывается равной π. Соответствующее преобразование, заменяющее прямые точками, а точки прямыми, называется полярным преобразованием. В силу доказанного выше, две точки A и B переводятся полярным преобразованием в такие прямые

a и b, что расстояние между A и B равно углу между a и b и наоборот; далее, если точки

A и B принадлежат прямой c, то полярное преобразование переводит их в прямые a и b, пересекающиеся в точке C, отвечающей, в силу полярного преобразования, прямой c (см. Рис. 10).

     Существование полярного преобразования с такими замечательными свойствами обеспечивает выполнение в неевклидовой геометрии Римана принципа двойственности, заключающегося в следующем: если заменить в любом предложении неевклидовой геометрии Римана слова "точка", "лежит на", "расстояние" соответственно словами "прямая", "проходит через", "угол" и наоборот, то придем к новому предложению, также являющемуся правильным. Для доказательства достаточно подвергнуть выражающий первое предложение чертеж, а также все относящиеся к нему рассуждения полярному преобразованию. Предложения, получаемые одно из другого таким образом, называются двойственными друг другу. Так, например, аксиоме о том, что каждые две точки неевклидовой плоскости Римана принадлежат единственной прямой, двойственна аксиома: каждые две прямые неевклидовой геометрии Римана пересекаются в одной точке. Другие примеры двойственных друг другу предложений будут приведены далее [1].

2.2 Примеры теорем неевклидовой геометрии Римана.                          Площадь треугольника и многоугольника

 

     Неевклидова геометрия Римана имеет много общего с обычной геометрией Евклида. Так, например, здесь также справедливы теоремы о сравнительной длине сторон треугольника (каждая сторона меньше суммы двух других и больше их разности), о свойствах равнобедренного треугольника, о замечательных точках треугольника. Справедливы также и признаки равенства треугольников; только наряду с "третьим признаком равенства треугольников" (два треугольника равны, если стороны одного соответственно равны сторонам другого) в неевклидовой геометрии Римана имеет место еще так называемый "четвертый признак равенства треугольников": два треугольника равны, если углы одного из них соответственно равны углам второго. (С этим связано отсутствие в неевклидовой геометрии Римана преобразований подобия.) Первый и второй признаки равенства треугольников доказываются так же, как и в случае евклидовой геометрии: с использованием "неевклидовых движений", роль которых играют повороты неевклидовой плоскости Ри мана вокруг точки (см. выше Рис. 4) и симметрии относительно прямой. Третий признак равенства треугольников также может быть доказан с помощью обычного приема - с использованием теорем о равнобедренном треугольнике, вывод которых не составляет труда (отметим, что симметрия относительно биссектрисы AD равнобедренного треугольника ABC, где AB = AC, переводит треугольник ABD в треугольник ACD, Рис. 11). Наконец, четвертый признак равенства треугольников получается из третьего с помощью принципа двойственности.              

     Теоремы о точке пересечения биссектрис треугольника ABC и о точке пересечения перпендикуляров, восстановленных к сторонам треугольника в их серединах, доказываются в точности так же, как в геометрии Евклида; первая из этих точек является центром вписанной в треугольник ABC окружности (см. Рис. 12, а), а вторая - центром описанной окружности (см. Рис. 12, б).

      До сих пор мы больше говорили о тех теоремах неевклидовой геометрии Римана, которые аналогичны известным теоремам евклидовой геометрии. Для того чтобы дать представление о различии этих двух геометрий, остановимся на вопросе о площади многоугольника в неевклидовой геометрии Римана. Вспомним прежде всего, что в этой геометрии сумма углов треугольника всегда больше π. Отсюда можно вывести, что сумма углов n-угольника в неевклидовой геометрии Римана всегда больше (n - 2)π. В самом деле, каждый n-угольник можно разбить на треугольников непересекающимися диагоналями (это относится как к неевклидовой геометрии Римана, так и к обычной геометрии Евклида и, разумеется, нуждается в доказательстве, которое здесь опускаем; случай изображен на Рис. 13).

     При этом сумма углов n-угольника равна  сумме всех углов всех треугольников; отсюда и вытекает, что сумма углов n-угольника в неевклидовой геометрии Римана всегда больше (n - 2)π. (Из аналогичных соображений вытекает, что в евклидовой геометрии сумма углов любого, может быть невыпуклого, n-угольника равна (n - 2)π.)

     Задача  измерения площадей состоит в  том, чтобы сопоставить каждому многоугольнику M некоторое число S(M) - площадь этого многоугольника - с соблюдением следующих требований:

     а) положительность: для любого многоугольника M (содержащего внутренние точки) S(M) > 0;

     б) инвариантность: если многоугольники и равны, то ; 

     в) аддитивность: если многоугольник M разбит на неперекрывающиеся части и , то ;

     г) нормировка: для многоугольника , признанного "единичным", (разумеется, все сказанное одинаково относится как к геометрии Евклида, так и к неевклидовой геометрии Римана).

     Очень просто указать число, удовлетворяющее наиболее важным условиям б) и в), - в качестве него можно взять угловой избыток (эксцесс) в (M) рассматриваемого n-угольника M, т. е. превышение суммы его углов над (n - 2)π: 

Информация о работе Бернхард Риман и эллиптическая геометрия