Роль математики в медицине

Автор работы: Пользователь скрыл имя, 19 Октября 2011 в 09:53, реферат

Описание

Выдающийся итальянский физик и астроном, один из основателей точного естествознания, Галилео Галилей (1564-1642) говорил, что "Книга природы написана на языке математики". Почти через двести лет родоначальник немецкой классической философии Иммануил Кант (1742-1804) утверждал, что "Во всякой науке столько истины, сколько в ней математики". Наконец, ещё через почти сто пятьдесят лет, практически уже в наше время, немецкий математик и логик Давид Гильберт (1862-1943) констатировал: "Математика - основа всего точного естествознания".

Содержание

Введение……………………………………………………………….3
Леонардо Да Винчи – математик и анатом………………………….6
Математика в медицине……………………………………………..10
Области применения математических методов…………………....14
История развития понятия «деонтология»…………………………15
Заключение…………………………………………………………...18
Список литературы…………………………………………………..20

Работа состоит из  1 файл

реферат по математике.docx

— 45.52 Кб (Скачать документ)

По свидетельству  Леонардо, он написал «120 книг по анатомии, при составлении которых», как  он пишет, у него «не было недостатка в прилежании, а был только недостаток во времени». К сожалению, нам неизвестно о каких 120 книгах по анатомии упоминает  Леонардо. До нас дошла только часть  его анатомических записей и  рисунков в виде отдельных листов. Эти рукописные книги, по свидетельству  современников, были изумительно выполнены. Познавательная способность гения  Леонардо да Винчи была беспредельна и неутомима: «Я не устаю, принося пользу, все труды неспособны утомить меня». Все свои исследования он старался пропустить сквозь призму математического анализа, наблюдая и изучая путем опыта окружающую природу всю свою жизнь.

Имя Леонардо да Винчи - одного из величайших людей  эпохи Возрождения - прочно вошло  в историю человечества. Леонардо - великий строитель человеческой культуры. Его записи и замечательные  зарисовки хранят неиссякаемый запас  идей и гениальной изобретательности.

 Витрувианский человек - рисунок, сделанный Леонардо Да Винчи примерно в 1490-92 годах, как иллюстрация для книги, посвященной трудам Витрувия. Рисунок сопровождается пояснительными надписями, в одном из его журналов. На нем изображена фигура обнаженного мужчины в двух наложенных одна на другую позициях: с разведенными в стороны руками, описывающими круг и квадрат. Рисунок и текст иногда называют каноническими пропорциями. При исследовании рисунка можно заметить, что комбинация рук и ног в действительности составляет четыре различных позы. Поза с разведенными в стороны руками и не разведенными ногами, вписывается в квадрат ("Квадрат Древних"). С другой стороны, поза с раскинутыми в стороны руками и ногами, вписывается в круг. И, хотя, при смене поз, кажется, что центр фигуры движется, на самом деле, пуп фигуры, который является настоящим её центром, остается неподвижным.

 Далее  идет описание соотношений между  различными частями человеческого  тела.

В сопроводительных записях Леонардо да Винчи указал, что рисунок был создан для  изучения пропорций (мужского) человеческого  тела, как оно описано в трактатах  античного римского архитектора  Витрувия, который написал следующее  о человеческом теле:

"Природа  распорядилась в строении человеческого  тела следующими пропорциями:

длина четырёх пальцев равна длине  ладони,

четыре  ладони равны стопе,

шесть ладоней составляют один локоть,

четыре  локтя - рост человека.

Четыре  локтя равны шагу, а двадцать четыре ладони равны росту человека.

Если  вы расставите ноги так, чтобы расстояние между ними равнялось 1/14 человеческого  роста, и поднимите руки таким  образом, чтобы средние пальцы оказались  на уровне макушки, то центральной точкой тела, равноудаленной от всех конечностей, будет ваш пупок.

Пространство  между расставленными ногами и полом  образует равносторонний треугольник.

Длина вытянутых рук будет равна  росту.

Расстояние  от корней волос до кончика подбородка равно одной десятой человеческого  роста.

Расстояние  от верхней части груди до макушки  составляет 1/6 роста.

Расстояние  же от верхней части груди до корней волос - 1/7.

Расстояние  от сосков до макушки составляет ровно  четверть роста.

Наибольшая  ширина плеч - восьмая часть роста.

Расстояние  от локтя до кончиков пальцев - 1/5 роста, от локтя до подмышечной ямки - 1/8.

Длина всей руки - это 1/10 роста.

Стопа - 1/7 часть роста.

Расстояние  от мыска ноги до коленной чашечки  равно четверти роста.

Расстояние  от кончика подбородка до носа и  от корней волос до бровей будет  одинаково и, подобно длине уха, равно 1/3 лица."

Повторное открытие математических пропорций человеческого тела в XV веке, сделанное Леонардо Да Винчи и другими, стало одним из великих           достижений,     предшествующих итальянскому ренессансу.  
 

                              
 
 
 

Математика в медицине 

Математика  всем нужна. Наборы чисел, как ноты, могут быть мертвыми значками, а  могут звучать музыкой, симфоническим  оркестром... И медикам тоже. Хотя бы для того, чтобы грамотно прочитать  обычную кардиограмму. Без знания азов математики нельзя быть докой  в компьютерной технике, использовать возможности компьютерной томографии... Ведь современная медицина не может  обходиться без сложнейшей техники.

    Когда-то математики пришли в  медицину с наивным представлением, что они легко вникнут в  наши симптомы и помогут улучшить  диагностику. С появлением первых  ЭВМ будущее представлялось просто  замечательным: заложил в компьютер  всю информацию о больном и  получил такое, что врачу и  не снилось. Казалось, что машина  может все. Но поле математики  в медицине предстало огромным  и невероятно сложным, а ее  участие в диагностике - вовсе  не простым перебором и компоновкой  многих сотен лабораторных и  инструментальных показателей. Так  какие же математические методы  применяются в медицине?

   Моделирование – один из главных методов, позволяющих ускорить технический процесс, сократить сроки освоения новых процессов.

    В настоящее время математику  все чаще называют наукой о   математических моделях. Модели  создаются с разными целями  – предсказать поведение объекта  в зависимости от времени; действия  над моделью, которые над самим  объектом производить нельзя; представление  объекта в удобном для обозрения  виде и другие.

    Моделью называется материальный  или идеальный объект, который  строится для изучения исходного  объекта и который отражает  наиболее важные качества и  параметры оригинала. Процесс  создания моделей называется  моделированием. Модели подразделяют  на материальные и идеальные.  Материальными моделями, например, могут служить фотографии, макеты  застройки районов и т.д. идеальные  модели часто имеют знаковую  форму.

    Математическое моделирование относится  к классу знакового моделирования.  Реальные понятия могут заменяться  любыми математическими объектами: числами, уравнениями, графиками и т.д., которые фиксируются на бумаге, в памяти компьютера.

    Модели бывают динамические и  статические. В динамических моделях  участвует фактор времени. В  статических моделях поведение  моделируемого объекта в зависимости  от времени не учитывается.

    Итак, моделирование – это метод изучения объектов, при котором вместо оригинала (интересующий нас объект) эксперимент проводят на модели (другой объект), а результаты количественно распространяют на оригинал.

    Таким образом, по результатам  опытов с моделью мы должны  количественно предсказать поведение  оригинала в рабочих условиях. Причем распространение на оригинал  выводов, полученных в опытах  с моделью, не обязательно должно  означать простое равенство тех  или иных параметров оригинала  и модели. Достаточно получить  правило расчета интересующих  нас параметров оригинала.

    К процессу моделирования предъявляются  два основных требования.

Во-первых, эксперимент на модели должен быть проще, быстрее, чем эксперимент  на оригинале.

Во-вторых, нам должно быть известно правило, по которому проводится расчет параметров оригинала на основе испытания модели. Без этого даже самое лучшее исследование модели окажется бесполезным.

    Статистика - наука о методах сбора, обработки, анализа и интерпретации данных, характеризующих массовые явления и процессы, т.е. явления и процессы, затрагивающие не отдельные объекты, а целые совокупности. Отличительная особенность статистического подхода состоит в том, что данные, характеризующие статистическую совокупность в целом, получаются в результате обобщения информации о составляющих ее объектах. Можно выделить следующие основные направления: методы сбора данных; методы измерения; методы обработки и анализа данных.

    Методы обработки и анализа  данных включают теорию вероятностей, математическую статистику и  их приложения в различных  областях технических наук, а  также наук о природе и обществе. Математическая статистика разрабатывает  методы статистической обработки  и анализа данных, занимается обоснованием и проверкой их достоверности, эффективности, условий применения, устойчивости к нарушению условий применения и т.п. В некоторых областях знаний приложения статистики столь специфичны, что их выделяют в самостоятельные научные дисциплины: теория надежности - в технических науках; эконометрика - в экономике; психометрия - в психологии, биометрия - в биологии и т.п. Такие дисциплины рассматривают специфичные для данной отрасли методы сбора и анализа данных.

    Примеры использования статистических  наблюдений в медицине. Два известных  профессора страсбургского медицинского  факультета Рамо и Саррю сделали  любопытное наблюдение относительно  скорости пульса. Сравнив наблюдения, они заметили, что между ростом  и числом пульса существует  зависимость. Возраст может влиять  на пульс только при изменении  роста, который играет в этом  случае роль регулирующего элемента. Число ударов пульса находится,  таким образом, в обратном отношении  с квадратным корнем роста.  Приняв за рост среднего человека  1,684 м, Рамо и Саррю полагают число ударов пульса равным 70. Имея эти данные, можно вычислить число ударов пульса у человека какого бы то ни было роста. Фактически Кетле предвосхитил анализ размерности и аллометрические уравнения применительно к человеческому организму.  Аллометрические уравнения: от греч. alloios — различный. В биологии большое число морфологических и физиологических показателей зависит от размеров тела; эта зависимость выражается уравнением: y = a • xb

    Биометрия - раздел биологии, содержанием которого являются планирование и обработка результатов количественных экспериментов и наблюдений методами математической статистики. При проведении биологических экспериментов и наблюдений исследователь всегда имеет дело с количественными вариациями частоты встречаемости или степени проявления различных признаков и свойств. Поэтому без специального статистического анализа обычно нельзя решить, каковы возможные пределы случайных колебаний изучаемой величины и являются ли наблюдаемые разницы между вариантами опыта случайными или достоверными. Математико-статистические методы, применяемые в биологии, разрабатываются иногда вне зависимости от биологических исследований, но чаще в связи с задачами, возникающими в биологии и медицине.

Применение  математико-статистических методов  в биологии представляет выбор некоторой  статистической модели, проверку её соответствия экспериментальным данным и анализ статистических и биологических  результатов, вытекающих из её рассмотрения. При обработке результатов экспериментов  и наблюдений возникают 3 основные статистические задачи: оценка параметров распределения; сравнение параметров разных выборок; выявление статистических связей. 
 

                                       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Области применения математических методов 

   Потребность в математическом описании появляется при любой

попытке вести обсуждение в точных понятиях и даже если это касается таких

сложных областей, как искусство и этика.

 Важен вопрос о том, в каких областях медицины применимы

математические  методы.  Примером может служить область медицинской

диагностики.  Для постановки диагноза врач совместно с другими

специалистами часто бывает вынужден учитывать  самые разнообразные

факты, опираясь отчасти на свой личный опыт,  а отчасти на материалы,

приводимые  в многочисленных медицинских руководствах и журналах.

Общее количество информации увеличивается  со все возрастающей

Информация о работе Роль математики в медицине