Одномерные комплексные отображения:множества Жюлиа,Мандельброта и Ньютона

Автор работы: Пользователь скрыл имя, 03 Июня 2012 в 15:56, дипломная работа

Описание

Заслуживает внимания тот факт, что появление фракталов (еще не получивших этого имени) в математической литературе около ста лет назад было встречено с прискорбной неприязнью, как это бывало и в истории развития многих других математических идей. Один известный математик, Шарль Эрмит, даже окрестил их монстрами. По крайней мере, общее мнение признало их патологией, предста¬вляющей интерес только для исследователей, злоупотребляющих математическими причудами, а не для настоящих ученых.

Содержание

1. Постановка вопроса 4
2. Цель работы 5
3.Методика исследования. 5
4. Структура и объём работы 5
Глава 1. Фракталы 6
§1. Понятие фрактала 6
§2. Самоподобие 9
Глава 2. Одномерные комплексные отображения 11
§1. Итерации комплексных функций. Множества Жюлиа 11
§2. Основы теории множества Жюлиа 12
§3. Множества Жюлиа 15
§4. Орбиты во множествах Жюлиа 19
§5. Хаос и множества Жюлиа 23
Глава 3. Множество Мандельброта 25
§1. Множество Мандельброта 25
1.1. Роль критической орбиты 36
1.2. Периоды и обрамление 37
1.3. Построение множества Мандельброта 41
Глава 4. Фракталы Ньютона 43
§1. Фракталы Ньютона 43
Глава 5. Приложение (решение задач на Pascal ABC) 47
Библиографический список 50