Автор работы: Пользователь скрыл имя, 30 Мая 2011 в 13:21, реферат
Графические методы позволяют выявить специфическое поведение данных, которое трудно обнаружить в результате общего количественного анализа. Они широко используются при анализе результатов исследований, при проверке зависимостей между переменными или при оценке параметров, описывающих установленные связи. Кроме того, графические методы играют важную роль в обобщении и представлении комплексных данных или связей между ними (это особенно эффективно для непрофессиональных наблюдателей).
Масштабные
ориентиры статистического
Масштабной шкалой называется линия, отдельные точки которой могут быть прочитаны как определенные числа. Шкала имеет большое значение в графике и включает три элемента: линию (или носитель шкалы), определенное число помеченных черточками точек, которые расположены на носителе шкалы в определенном порядке, цифровое обозначение чисел, соответствующих отдельным помеченным точкам. Как правило, цифровым обозначением снабжаются не все помеченные точки, а лишь некоторые из них, расположенные в определенном порядке. По правилам числовое значение необходимо помещать строго против соответствующих точек, а не между ними (рис. 2.2).
Рис. 2.2. Числовые интервалы
Носитель шкалы может представлять собой как прямую, так и кривую линии. Поэтому различают шкалы прямолинейные (например, миллиметровая линейка) и криволинейные - дуговые и круговые (циферблат часов).
Графические и числовые интервалы бывают равными и неравными. Если на всем протяжении шкалы равным графическим интервалам соответствуют равные числовые, такая шкала называется равномерной. Когда же равным числовым интервалам соответствуют неравные графические интервалы и наоборот, шкала называется неравномерной.
Масштабом равномерной шкалы называется длина отрезка (графический интервал), принятого за единицу и измеренного в каких-либо мерах. Чем меньше масштаб (рис. 2.3), тем гуще располагаются на шкале точки, имеющие одно и то же значение. Построить шкалу - это значит на заданном носителе шкалы разместить точки и обозначить их соответствующими числами согласно условиям задачи.
Как
правило, масштаб определяется примерной
прикидкой возможной длины шкалы и
ее пределов. Например, на поле в 20 клеток
надо построить шкалу от 0 рис. 2.3. Масштабы
Из
неравномерных наибольшее распространение
имеет логарифмическая шкала. Методика
ее построения несколько иная, так как
на этой
2.2. КЛАССИФИКАЦИЯ ВИДОВ ГРАФИКОВ
Существует множество видов графических изображений (рис. 2.5; 2.6). Их классификация основана на ряде признаков: а) способ построения графического образа; б) геометрические знаки, изображающие статистические показатели; в) задачи, решаемые с помощью графического изображения.
Рис. 2.5. Классификация статистических графиков по форме графического образа
По способу построения статистические графики делятся на диаграммы и статистические карты.
Диаграммы - наиболее распространенный способ графических изображений. Это графики количественных отношений. Виды и способы их построения разнообразны. Диаграммы применяются для наглядного сопоставления в различных аспектах (пространственном, временном и др.) независимых друг от друга величин: территорий, населения и т. д. При этом сравнение исследуемых совокупностей производится по какому-либо существенному варьирующему признаку Статистические карты - графики количественного распределения по поверхности. По своей основной цели они близко примыкают к диаграммам и специфичны лишь в том отношении, что представляют собой условные изображения статистических данных на контурной географической карте, т. е. показывают пространственное размещение или пространственную распространенность статистических данных. Геометрические знаки как было сказано выше, - это либо точки, либо линии или плоскости, либо геометрические тела. В соответствии с этим различают графики точечные, линейные, плоскостные и пространственные (объемные).
Рис. 2.6. Классификация статистических графиков по способу построения и задачам изображения
При
построении точечных диаграмм в качестве
графических образов
Статистические карты по графическому образу делятся на картограммы и картодиаграммы.
В зависимости от круга решаемых задач выделяют диаграммы сравнения, структурные диаграммы и диаграммы динамики.
Особым
видом графиков являются диаграммы
распределения величин, представленных
вариационным рядом. Это гистограмма
полигон, огива, кумулята.
2.3. ДИАГРАММЫ СРАВНЕНИЯ
Наиболее распространенными диаграммами сравнения являются столбиковые диаграммы, принцип построения которых состоит в изображении статистических показателей в виде поставленных по вертикали прямоугольников - столбиков. Каждый столбик изображает величину отдельного уровня исследуемого статистического ряда. Таким образом, сравнение статистических показателей возможно потому, что все сравниваемые показатели выражены в одной единице измерения.
При построении столбиковых диаграмм необходимо начертить систему прямоугольных координат, в которой располагаются столбики. На горизонтальной оси располагаются основания столбиков, величина основания определяется произвольно, но устанавливается одинаковой для всех.
Шкала, определяющая масштаб столбиков по высоте, расположена по вертикальной оси. Величина каждого столбика по вертикали соответствует размеру изображаемого на графике статистического показателя. Таким образом, у всех столбиков, составляющих диаграмму, переменной величиной является только одно измерение. Покажем построение столбиковой диаграммы по данным табл. 2.1, характеризующим вклады граждан в учреждения Сбербанка в 1996 г. (рис. 2.7).
Таблица 2.1
Месяц | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Вклад,млрд. руб. | 550 | 560 | 560 | 640 | 640 | 1100 | 1100 | 1100 | 1630 | 1610 | 1610 | 2500 |
Вклады граждан в учреждения Сбербанка в 1996 г. (цифры условные)
В соответствии с изложенными выше правилами на горизонтальной оси размещаются основания двенадцати столбиков на Одинаковом расстоянии друг от друга, в данном случае 0,5 см. ширина столбиков принята 0,5 см. Масштаб на оси ординат - 500 млрд. руб. - 1 см. Наглядность данной диаграммы достигается Равнением величины столбиков.
Размещение столбиков в поле графика может быть различным-
• на одинаковом расстоянии друг от друга (рис. 2.7);
• вплотную друг к другу (рис. 2.8);
• в частном наложении друг на друга (рис. 2.9).
Рис. 2.8. Динамика выпуска книг и брошюр в одном из регионов России за 1993-1995 гг.
Рис. 2.9. Динамика денежных доходов населения в регионе за 1993-1995 гг.
Правила построения столбиковых диаграмм допускают одновременное расположение на одной горизонтальной оси изображений нескольких показателей. В этом случае столбики располагаются группами, для каждой из которых может быть принята разная размерность варьирующих признаков (рис. 2.10).
Разновидности столбиковых диаграмм составляют так называемые ленточные или полосовые диаграммы. Их отличие состоит в том, что масштабная шкала расположена по горизонтали сверху или снизу и она определяет величину полос по длине.
Рис. 2.10. Динамика производства некоторых видов товаров хозяйственного потребления за 1993-1995 гг.
Область применения столбиковых и полосовых диаграмм одинакова, так как идентичны правила их построения. Одномерность изображаемых статистических показателей и их одномасштабность для различных столбиков и полос требуют выполнения единственного положения: соблюдения соразмерности (столбиков - по высоте, полос - по длине) и пропорциональности изображаемым величинам. Для выполнения этого требования необходимо: во-первых, чтобы шкала, по которой устанавливается размер столбика (полосы), начиналась с нуля; во-вторых, эта шкала должна быть непрерывной, т. е. охватывать все числа данного статистического ряда; разрыв шкалы и соответственно столбиков (полос) не допускается. Невыполнение указанных правил приводит к искаженному графическому представлению анализируемого статистического материала.
В качестве примера приведем полосовую диаграмму сравнения поданным табл. 2.2 (рис. 2.11). Столбиковые и полосовые диаграммы как прием графического изображения статистических данных, по существу, взаимозаменяемы, т. е. рассматриваемые статистические показатели равно могут быть представлены как столбиками, так и полосами. И в этом, и в другом случае для изображения величины явления используется одно измерение каждого прямоугольника - высота столбика или длина полосы. Поэтому и сфера применения этих двух видов диаграмм в основном одинакова.
Таблица 2.2
Общий объем промышленного производства в некоторых странах СНГ в 1 квартале 1996 г. (в % к I кварталу 1996 г.) (цифры условные)
Страны СНГ | Общий объем промышленного производства, % |
Казахстан | 88,7 |
Беларусь | 83,5 |
Россия | 80,7 |
Кыргызстан | 77,6 |
Таджикистан | 71,8 |
Армения | 41,6 |
Рис. 2.11. Общий объем промышленного производства в странах СНГ в I квартале 1996 г. (в % к I кварталу 1996 г.)
Разновидностью столбиковых (ленточных) диаграмм являются направленные диаграммы. Они отличаются от обычных двусторонним расположением столбиков или полос и имеют начало отсчета по масштабу в середине. Обычно такие диаграммы применяются для изображения величин противоположного качественного значения. Сравнение между собой столбиков (полос), направленных в разные стороны, менее эффективно, чем расположенных рядом в одном направлении. Несмотря на это, анализ направленных диаграмм позволяет делать достаточно содержательные выводы, так как особое расположение придает графику яркое изображение. К группе двусторонних относятся диаграммы числовых отклонений. В них полосы направлены в обе стороны от вертикальной нулевой линии: вправо - для прироста; влево - для уменьшения. С помощью таких диаграмм удобно изображать отклонения от плана или некоторого уровня, принятого за базу сравнения. Важным достоинством рассматриваемых диаграмм является возможность видеть размах колебаний изучаемого статистического признака, что само по себе имеет большое значение для экономического анализа (рис. 2.12).
Информация о работе Графические методы статистического анализа