Корреляционно-регрессионый анализ зависимости работающих активов от капитала по показателям 32 банков

Автор работы: Пользователь скрыл имя, 04 Января 2011 в 11:20, курсовая работа

Описание

Цель статистики в экономике – это возможность правильно выбрать решения в условиях неопределенности сложившейся ситуации, умение спрогнозировать и предугадать социально-экономические явления, сделать правильные выводы и внести свой вклад в развитие экономической жизни.

Выявление взаимосвязей – одна из важнейших задач применения статистики в экономике.

В своей работе я рассмотрю корреляционно-регрессионный метод выявления взаимосвязи и проиллюстрирую его на примере взаимосвязи капитала и работающих активов 32 банков.

Содержание

I. Введение (“Что такое статистика?”; факты из истории)

II. Основная часть

1) Причинно-следственная связь.

2) Функциональные и стохастические связи.

•Прямые и обратные связи.
•Прямолинейные и криволинейные связи.
•Однофакторные и многофакторные связи.
3.Статистические методы моделирования связи.
4.Статистическое моделирование связи методом корреляционного и регрессионного анализа.
•Двухмерная линейная модель корреляционного и регрессионного анализа.
5) Проверка адекватности регрессионной модели.

6) Экономическая интерпретация параметров регрессии.


III. Заключение

IV. Список литературы

Работа состоит из  1 файл

курсовая.doc

— 207.00 Кб (Скачать документ)

Министерство  общего и профессионального

образования Российской Федерации 
 

Московский  Государственный  Технический Университет  “МАМИ” 
 

Кафедра:

“Бухгалтерский  учет и финансы предприятий” 
 
 
 
 

КУРСОВАЯ  РАБОТА

по курсу

“СТАТИСТИКА”

на тему:

«Корреляционно-регрессионый анализ

зависимости работающих активов

  от капитала по показателям 32 банков» 
 
 

                                    Студентки группы 4-ЭФЭ-4
                                     Ревняковой О.В.                                      
 
 

                                                          Руководитель: Ковалева О.Б.

   
 
 
 
 
 
 
 

                                                           Москва-2002

                                         План  

I. Введение (“Что такое статистика?”; факты из истории)    

II. Основная часть

1) Причинно-следственная  связь.

2) Функциональные  и стохастические связи.

  • Прямые и обратные связи.
  • Прямолинейные и криволинейные связи.
  • Однофакторные и многофакторные связи.
  1. Статистические методы моделирования связи.
  1. Статистическое моделирование связи методом корреляционного и регрессионного анализа.
  • Двухмерная линейная модель корреляционного и регрессионного анализа.

5) Проверка  адекватности регрессионной модели.

6) Экономическая интерпретация параметров регрессии. 

III. Заключение

IV. Список литературы 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Введение 

Слово “статистика” приходит от латинского слова status (состояние), которое употреблялось  в значении “политическое состояние”. Отсюда итальянские слова stato – государство  и  statista – знаток государств, отсюда также и немецкое слово Staat и английское state. В научный оборот слово “статистика” ввёл профессор Геттингенского университета Готфрид Ахенваль (1719 - 1772), и понималось оно тогда как государствоведение.

Прежде  чем стать наукой в ее современном понимании статистика прошла многовековую историю развития.

Числовые  данные, относящиеся к тем или  иным явлениям, начали применяться  уже в глубокой древности. Так, известно, что еще за 5 тысяч лет до нашей  эры проводился подсчёт населения  в Китае, вёлся учет имущества в Древнем Риме, в средние века проводились переписи населения, домашнего имущества, земель. Эти сведения использовались в основном в военных целях и при обложении налогами. В столь отдаленные времена осуществлялся лишь сбор статистических сведений, а их обработку и анализ, то есть зарождение статистики как науки следует отнести ко второй половине 17 века. Именно в это время профессор физиологии и права Г. Ахенваль с 1746 года начал читать впервые в Марбургском, а затем в Геттингенском университетах новую учебную дисциплину, которую он и назвал статистикой. Основным содержанием этого курса было описание политического состояния и достопримечательностей государства.

Это направление  развития статистики получило название описательного. Содержание, задачи, предмет изучения статистики в понимании Г. Ахенваля были далеки от современного взгляда на статистику как науку.

Гораздо ближе к современному пониманию  статистики была английская школа политических арифметиков, которая возникла на 100 лет раньше немецкой описательной школы, ее основателями были В. Петти (1623-1687гг.) и Дж. Граунт (1620-1674 гг.). Политические арифметики путём обобщения и анализа фактов стремились цифрами охарактеризовать состояние и развитие общества, показать закономерности развития общественных явлений, проявляющихся в массовом материале. История показала, что именно школа политических арифметиков явилась истоком возникновения современной статистики как науки. В. Петти по праву считается создателем экономической статистики.

В первой половине 19 века возникло третье направление  статистической науки – статистико-математическое.  Среди представителей этого направления следует отметить бельгийского статистика А. Кетле (1796-1874 гг.) – основоположника учения о средних величинах. Математическое направление в статистике развивалось в работах англичан Ф. Гальтона (1822-1911 гг.) и К. Пирсона (1857-1936 гг.), В. Госсета (1876-1937 гг.), более известного под псевдонимом Стьюдента, Р. Фишера (1890-1962 гг.), М. Митчела (1874-1948 гг.) и др. Представители этого направления считали основой статистики теорию вероятностей, составляющую одну из отраслей прикладной математики.

В развитии российской статистической науки и  практики видное место принадлежит  И.К. Кириллову (1689-1737 гг.), И.Ф. Герману (1755-1815 гг.), Д.Н. Журавскому (1810-1856 гг.), Н.Н. Семенову-Тян-Шанскому (1827-1914 гг.), Ю.Э. Янсону (1835-1893), А.. Чупрову (1874-1926 гг.), В.С. Немчинову (1894-1964 гг.), С.Г. Струмилину (1877-1974 гг.), В.Н. Старовскому (1905-1975 гг.) и др.

Большим шагом в развитии статистической науки послужило применение экономико-математических методов и широкое использование компьютерной техники в анализе социально-экономических явлений.

В настоящее  время ведется работа по совершенствованию  статистической методологии и завершению перехода Российской Федерации на принятую в международной практике систему учёта и статистике в соответствии с требованиями развития рыночной экономики.

Таким образом, история развития статистики показывает, что статистическая наука сложилась в результате теоретического обобщения накопленного человечеством передового опыта учётно-статистических работ, обусловленных прежде всего потребностями управления жизни общества.

Развитие  статистической науки, расширение сферы  применения практических статистических исследований, ее активное участие в механизме управления экономикой привели к изменению содержания самого понятия “статистика”.

Сейчас  термин “статистика” употребляется  в трёх значениях:

  • Отрасль практической деятельности (“статистический учёт”) по сбору, обработке, анализу и публикации массовых цифровых данных о самых различных явлениях и процессах общественной жизни; эту деятельность на профессиональном уровне осуществляет государственная статистика – Государственный комитет по статистике Российской Федерации и система его учреждений, организованных по административно-территориальному признаку, а также ведомственная статистика (на предприятиях, в объединениях, ведомствах, министерствах);
  • Совокупность цифровых сведений, статистические данные, предоставляемые в отчетности предприятий, организаций, отраслей экономики, а также публикуемые в сборниках, справочниках, периодической прессе, которые являются результатом статистической работы;
  • Отрасль общественных наук, специальная научная дисциплина, изучаемая в высших и средних специальных учреждениях.
 

Цель  статистики в экономике – это  возможность правильно выбрать  решения в условиях неопределенности сложившейся ситуации, умение спрогнозировать  и предугадать социально-экономические  явления, сделать правильные выводы и внести свой вклад в развитие экономической жизни.

Выявление взаимосвязей – одна из важнейших  задач применения статистики в экономике.

В своей  работе я рассмотрю корреляционно-регрессионный метод выявления взаимосвязи и проиллюстрирую его на примере взаимосвязи капитала и работающих активов 32 банков.  
 

Причинно-следственная связь. 

Исследование  объективно существующих связей между  явлениями – важнейшая задача общей теории статистики. В процессе статистического исследования зависимостей вскрываются причинно-следственные отношения между явлениями, что позволяет выявлять факторы (признаки), оказывающие существенное влияние на вариацию изучаемых явлений и процессов. Причинно-следственные отношения – это связь явлений и процессов, когда изменение одного и них – причины – ведет к изменению другого – следствия.

    Причина – это совокупность  условий, обстоятельств, действие  которых приводит к появлению  следствия. Если между явлениями  действительно существуют причинно-следственные отношения, то эти условия должны обязательно реализовываться вместе с действием причин. Причинные связи носят всеобщий и многообразный характер, и для обнаружения причинно-следственных связей необходимо отбирать отдельные явления и изучать их изолированно.

    Особое значение при исследовании  причинно-следственных связей имеет  выявление временной последовательности: причина всегда должна предшествовать  следствию, однако не каждое  предшествующее событие следует  считать причиной, а последующее  следствием.

    В реальной социально-экономической действительности причину и следствие необходимо рассматривать как смежные явления, появление которых обусловлено комплексом сопутствующих более простых причин и следствий. Между сложными группами причин и следствий возможны многозначительные связи, когда за одной причиной будет следовать то одно, то другое действие или одно действие имеет несколько различных причин. Чтобы установить однозначную причинную связь между явлениями или предсказать возможные следствия конкретной причины, необходима полная абстракция от всех прочих явлений в исследуемой временной или пространственной среде. Теоретически такая абстракция воспроизводится. Приемы абстракции часто применяются при изучении взаимосвязей между двумя признаками (парной корреляции). Но чем сложнее изучаемые явления, тем труднее выявить причинно-следственные связи между ними. Взаимное переплетение различных внутренних и внешних факторов неизбежно приводит к некоторым ошибкам в определении причины и следствия.

Социально-экономические явления представляют собой результат одновременного воздействия большого числа причин. Следовательно, при изучении этих явлений необходимо выявлять главные, основный причины, абстрагируясь от второстепенных.

В основе первого этапа статистического изучения связи лежит качественный анализ изучаемого явления, связанный с анализом природы, социального или экономического явления методами экономической теории, социологии, конкретной экономики. Второй этап – построение модели связи. Он базируется на методах статистики: группировках, средних величинах, таблицах и т.д. Третий, последний этап – интерпретация результатов – вновь связан с качественными особенностями изучаемого явления.

Статистика  разработала множество методов  изучения связей, выбор которых зависит от целей исследования и от поставленных задач. Связи между признаками и явлениями, ввиду их большого разнообразия, классифицируются по ряду оснований. Признаки по их значению для изучения взаимосвязи делятся на 2 класса. Признаки, обуславливающие изменения других, связанных с ними признаков, называются факторными, или просто факторами. Признаки, изменяющиеся под действием факторных признаков, являются результативными. Связи между явлениями и их признаками классифицируются по степени тесноты связи, направлению и аналитическому выражению.  
 

Функциональные  и стохастические связи. 

Между различными явлениями и их признаками необходимо прежде всего выделить 2 типа связей: функциональную (жестко детерминированную) и статистическую (стохастически  детерминированную).

В соответствии с жестко детерминистическим представлением о функционировании экономических  систем необходимость и закономерность однозначно проявляются в каждом отдельном явлении, то есть любое  действие вызывает строго определенный результат; случайными (непредвиденными заранее) воздействиями при этом пренебрегают. Поэтому при заданных начальных условиях состояние такой системы может быть определено с вероятностью, равной 1. Разновидностью такой закономерности является функциональная связь.

Связь признака у с признаком х называется функциональной, если каждому возможному значению независимого признака х соответствует 1 или несколько строго определенных значений зависимого признака у. Определение функциональной связи может быть легко обобщено для случая многих признаков  х12 …хn .

Информация о работе Корреляционно-регрессионый анализ зависимости работающих активов от капитала по показателям 32 банков