Автор работы: Пользователь скрыл имя, 16 Декабря 2010 в 21:38, реферат
ПОНЯТИЯ И КЛАССИИКАЦИЯ РЯДОВ ДИНАМИКИ. ПОКАЗАТЕЛИ , РАССЧИТЫВАЕМЫЕ НА ОСНОВЕ РЯДОВ ДИНАМИКИ.
где Тр1 , Тр2 , ... , Трn -- индивидуальные (цепные) темпы роста (в коэффициентах), n -- число индивидуальных темпов роста.
Средний
темп роста можно определить и по абсолютным
уровням ряда динамики по формуле 19:
На
основе взаимосвязи между цепными и базисными
темпами роста средний темп роста можно
определить по формуле 20:
Средний
темп прироста можно определить на основе
взаимосвязи между темпами роста и прироста
. При наличии данных о средних темпах
роста для получения средних темпов прироста
используется зависимость , выраженная
формулой 21:
(при выражении среднего темпа роста в коэффициентах)
Изучение тренда включает в себя два основных этапа :
Проверка на наличие тренда в ряду динамики может быть осуществлена по нескольким критериям .
Если в ряду динамики общая
тенденция к росту или снижению отсутствует
, то количество серий является случайной
величиной , распределенной приближенно
по нормальному закону (для n > 10) . Следовательно
, если закономерности в изменениях уровней
нет , то случайная величина R оказывается
в доверительном интервале
Параметр t назначается в соответствии с принятым уровнем доверительной вероятности Р.
Среднее
число серий вычисляется по формуле 22
:
Среднее
квадратическое отклонение числа серий
вычисляется по формуле 23 :
здесь n -- число уровней ряда .
Выражение
для доверительного интервала приобретает
вид
Полученные границы доверительного интервала округляют до целых чисел , уменьшая нижнюю границу и увеличивая верхнюю .
Непосредственное выделение тренда может быть произведено тремя методами .
При нечетном сглаживании полученное среднее арифметическое значение закрепляют за серединой расчетного интервала , при четном это делать нельзя . Поэтому при обработке ряда четными интервалами их искусственно делают нечетными , для чего образуют ближайший больший нечетный интервал , но из крайних его уровней берут только 50%.
Недостаток
методики сглаживания скользящими средними
состоит в условности определения сглаженных
уровней для точек в начале и конце ряда
. Получают их специальными приемами -
расчетом средней арифметической взвешенной
. Так , при сглаживании по трем точкам
выровненное значение в начале ряда рассчитывается
по формуле 24 :
.
(24)
Для последней точки расчет симметричен .
При
сглаживании по пяти точкам имеем такие
уравнения (формулы 25):
(25)
Для последних двух точек ряда расчет сглаженных значений полностью симметричен сглаживанию в двух начальных точках .
Формулы
расчета по скользящей средней выглядят
, в частности , следующим образом (формула
26):
для
3--членной
.
где f(t) - уровень , определяемый тенденцией развития ;
-- случайное и циклическое отклонение от тенденции.
Целью аналитического выравнивания динамического ряда является определение аналитической или графической зависимости f(t) . На практике по имеющемуся временному ряду задают вид и находят параметры функции f(t) , а затем анализируют поведение отклонений от тенденции. Функцию f(t) выбирают таким образом , чтобы она давала содержательное объяснение изучаемого процесса .
Чаще всего при выравнивании используются следующий зависимости :
линейная ;
параболическая ;
экспоненциальная
или ).
Оценка параметров ( ) осуществляется следующими методами :
В большинстве расчетов используется метод наименьших квадратов , который обеспечивает наименьшую сумму квадратов отклонений фактических уровней от выравненных :
Для линейной зависимости ( ) параметр обычно интерпретации не имеет , но иногда его рассматривают , как обобщенный начальный уровень ряда ; -- сила связи , т. е. параметр , показывающий , насколько изменится результат при изменении времени на единицу . Таким образом , можно представить как постоянный теоретический абсолютный прирост .
Построив
уравнение регрессии , проводят оценку
его надежности . Это делается посредством
критерия Фишера (F) . Фактический уровень
(
) , вычисленный по
формуле 28, сравнивается с теоретическим
(табличным) значением :
, (28)
где k -- число параметров функции , описывающей тенденцию;
n -- число уровней ряда ;
Остальные
необходимые показатели вычисляются по
формулам 29 - 31 :
(30)
(31)
сравнивается с
при
степенях свободы
и уровне значимости a (обычно a = 0,05). Если
>
, то уравнение регрессии
значимо , то есть построенная модель адекватна
фактической временной тенденции.
Уровень сезонности оценивается с помощью :
Индексы сезонности показывают , во сколько раз фактический уровень ряда в момент или интервал времени t больше среднего уровня либо уровня , вычисляемого по уравнению тенденции f(t) . При анализе сезонности уровни временного ряда показывают развитие явления по месяцам (кварталам) одного или нескольких лет . Для каждого месяца (квартала) получают обобщенный индекс сезонности как среднюю арифметическую из одноименных индексов каждого года . Индексы сезонности - это , по либо уровень существу , относительные величины координации , когда за базу сравнения принят либо средний уровень ряда , либо уровень тенденции . Способы определения индексов сезонности зависят от наличия или отсутствия основной тенденции .
Если
тренда нет или он незначителен , то для
каждого месяца (квартала) индекс рассчитывается
по формуле 32: