Автор работы: Пользователь скрыл имя, 18 Апреля 2013 в 08:21, дипломная работа
Цель данной разработки была продиктована следующими причинами:
1. Применяемая на сегодняшний день плата питания гиромотора для ГБ-23 имеет следующие недостатки:
не обеспечивает требуемый уровень надежности;
имеет очень низкий массогабаритный показатель (состоит из двух плат);
выполнена на устаревшей элементной базе;
не обеспечивает защиту от короткого замыкания и контроль работы гиромотора;
по входным параметрам не подходит для гирокомпаса “Гюйс”.
ВВЕДЕНИЕ. 2
1. РАЗРАБОТКА АППАРАТНОЙ ЧАСТИ. 5
1.1. Текст технического задания. 5
1.2. Разработка структурной схемы 10
1.3. Разработка принципиальной электрической схемы. 17
1.3.1. Разработка импульсного преобразователя напряжения. 17
1.3.2. Разработка формирователя импульсов перевозбуждения. 22
1.3.3. Разработка формирователя трехфазного напряжения. 23
1.3.4. Разработка детектора превышения тока. 25
1.3.5. Разработка прочих узлов устройства. 26
1.4. Обоснование выбора элементной базы. 27
1.5. Расчет узлов схемы. 32
1.5.1. Исходные данные. 32
1.5.2. Расчет импульсного преобразователя. 33
1.5.3. Расчет входного фильтра. 37
1.6. Разработка печатной платы. 38
2. РАЗРАБОТКА ПРОГРАММЫ ДЛЯ МИКРОКОНТРОЛЛЕРА. 42
2.1. Выбор микроконтроллера. 42
2.1.1. Выбор архитектуры микроконтроллера. 42
2.1.2. Сравнительный анализ микроконтроллеров MICROCHIP и ATMEL. 45
2.1.3. Выбор конкретной модели по параметрам. 51
2.2. Краткое описание выбранного микроконтроллера. 53
2.2.1. Отличительные особенности МК ATmega8. 53
2.2.2. Программная модель микроконтроллеров AVR. 55
2.3. Разработка алгоритма программы 62
2.4. Текст программы 71
3. ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ПРОЕКТА. 76
3.1. Расчет затрат на разработку и изготовление опытного образца изделия. 76
3.2. Расчет себестоимости при серийном производстве. 81
3.2.1. Проектируемая плата. 81
3.2.2. Базовая плата. 82
3.3. Оценка повышения конкурентоспособности товара с применением разрабатываемого изделия. 83
3.4. Оценка экономической эффективности инвестиций в проект. 86
3.4.1. Определение расчетного периода. 86
3.4.2. Расчет нормы дисконта и коэффициента дисконтирования. 86
3.4.3. Расчет показателей эффективности. 87
3.5. Вывод по главе. 91
4. ОРГАНИЗАЦИЯ РАБОЧЕГО МЕСТА ПРИ РАБОТЕ С ПЭВМ. 92
4.1. Анализ вредных и опасных факторов при работе с ПЭВМ. 92
4.1.1. Излучение персонального компьютера. 92
4.1.2. Зрительная работа за компьютером и ее последствия. 94
4.1.3. Прочие вредные воздействия при работе за компьютером. 95
4.2. Методы правильной организации работы с ПЭВМ, снижающие воздействие неблагоприятных факторов. 98
4.2.1. Методы обеспечения электромагнитной безопасности. 98
4.2.2. Меры по профилактике зрительных перегрузок. 101
4.2.3. Эргономичная организация рабочего места пользователя ПЭВМ. 104
4.3. Исследование реального объекта на предмет обеспечения безопасности при эксплуатации компьютерной техники. 106
4.3.1. Общая характеристика исследуемого объекта. 106
4.3.2. Выявленные нарушения условий труда. 108
4.3.3. Рекомендации по перепланировке помещения с учетом требований безопасности. 109
ЗАКЛЮЧЕНИЕ 112
ЛИТЕРАТУРА. 113
ПРИЛОЖЕНИЕ 1: Перечень условных обозначений. 115
Современные 8-разрядные
RISC-микроконтроллеры
Поскольку в данном проекте требуется высокая производительность микроконтроллера, т.к. от него требуется ШИМ управление на частоте порядка 100 кГц, при этом для обеспечения точного регулирования, разрядность ШИМ должна приближаться к разрядности АЦП, т.е. составлять порядка 10 – 12 разрядов. Таким образом, высокая производительность является для данного проекта существенным фактором. В связи с этим, наиболее целесообразным является использование в проекте микроконтроллера с RISC-архитектурой, которые и рассмотрим более подробно.
Ведущими производителями
В России в последнее время появилось множество публикаций посвященных микроконтроллерам MICROCHIP и ATMEL, что свидетельствует об их большой популярности у российских разработчиков. В частности публикации [16, 17], на основе которых и проведем сравнительный анализ.
Первые микроконтроллеры компании MICROCHIP PIC16C5x появились в конце 80-х годов и благодаря своей высокой производительности и низкой стоимости составили серьёзную конкуренцию производимым в то время 8-разрядным МК с CISC-архитектурой.
Первое, что привлекает внимание в PIC-контроллерах — это простота и эффективность. В основу концепции PIC, единую для всех выпускаемых семейств, была положена RISC-архитектура с системой простых однословных команд, применение встроенной памяти программ и данных и малое энергопотребление.
Система команд базового семейства PIC165x содержит только 33 команды. Как ни странно, и это сыграло свою роль в популяризации PIC-контроллеров. Все команды (кроме команд перехода) выполняются за один машинный цикл (или четыре машинных такта) с перекрытием по времени выборок команд и их исполнения, что позволяет достичь производительности до 5 MIPS при тактовой частоте 20 МГц.
Микроконтроллеры PIC имеют симметричную систему команд, позволяющую выполнять операции с любым регистром, используя любой метод адресации. Правда, разработчики MICROCHIP так и не смогли отказаться от любимой всеми структуры с регистром-аккумулятором, необходимым участником всех операций с двумя операндами. Зато теперь пользователь может сохранять результат операции на выбор, где пожелает, в самом регистре-аккумуляторе или во втором регистре, используемом для операции. В настоящее время MICROCHIP выпускает четыре основных семейства 8-разрядных RISC-микроконтроллеров, совместимых снизу вверх по программному коду:
Большинство PIC-контроллеров выпускаются с однократно программируемой памятью программ OTP с возможностью внутрисхемного программирования или масочным ROM. Для целей отладки предлагаются версии с ультрафиолетовым стиранием, надо признать, не очень дешёвые. Полное количество выпускаемых модификаций PIC-контроллеров составляет порядка пятисот наименований. Как не без основания утверждает MICROCHIP, продукция компании перекрывает весь диапазон применений 8-разрядных микроконтроллеров.
Особый акцент MICROСHIP делает на максимально возможное снижение энергопотребления для выпускаемых микроконтроллеров. При работе на частоте 4 МГц PIC-контроллеры, в зависимости от модели, имеют ток потребления меньше 1,5 мА, а при работе на частоте 32,768 КГц — ниже 15 мкА. Поддерживается “спящий” режим работы. Диапазон питающих напряжений PIC-контроллеров составляет 2,0...6,0 В.
В настоящее время готовится к запуску в производство новое пятое семейство PIC-контроллеров PIC18Cxxx. Новые микроконтроллеры будут иметь расширенное RISC-ядро, оптимизированное под использование нового Си-компилятора, адресное пространство программ до 2 Мбайт, до 4 Кбайт встроенной памяти данных и производительность 10 MIPS.
Из программных средств
В отличие от MICROCHIP, компания ATMEL Corp. — один из мировых лидеров в производстве широкого спектра микросхем энергонезависимой памяти, FLASH-микроконтроллеров и микросхем программируемой логики, взяла старт по разработке RISC-микроконтроллеров в середине 90-х годов, используя все свои технические решения, накопленные к этому времени.
Концепция новых скоростных микроконтроллеров
была разработана группой
AVR-архитектура, на основе
32 регистра общего назначения
образуют регистровый файл
Регистровый файл также доступен как часть памяти данных. 6 из 32-х регистров могут использоваться как три 16-разрядных регистра-указателя для косвенной адресации. Старшие микроконтроллеры семейства AVR имеют в составе АЛУ аппаратный умножитель.
Базовый набор команд AVR содержит 120 инструкций. Инструкции битовых операций включают инструкции установки, очистки и тестирования битов.
Все микроконтроллеры AVR имеют встроенную FLASH ROM с возможностью внутрисхемного программирования через последовательный 4-проводной интерфейс.
Периферия МК AVR включает: таймеры-счётчики, широтно-импульсные модуляторы, поддержку внешних прерываний, аналоговые компараторы, 10-разрядный 8-канальный АЦП, параллельные порты (от 3 до 48 линий ввода и вывода), интерфейсы UART и SPI, сторожеой таймер и устройство сброса по включению питания. Все эти качества превращают AVR-микроконтроллеры в мощный инструмент для построения современных, высокопроизводительных и экономичных контроллеров различного назначения.
В рамках единой базовой архитектуры AVR-микроконтроллеры подразделяются на три подсемейства:
AVR-микроконтроллеры
Средства отладки. ATMEL предлагает программную среду AVR-studio для отладки программ в режиме симуляции на программном отладчике, а также для работы непосредственно с внутрисхемным эмулятором. AVR-studio доступен с WEB-страницы ATMEL, содержит ассемблер и предназначен для работы с эмуляторами ICEPRO и MegaICE. Ряд компаний предлагают свои версии Си-компиляторов, ассемблеров, линковщиков и загрузчиков для работы с микроконтроллерами семейства AVR. Как и продукция MICROCHIP, микроконтроллеры ATMEL широко применяются в России и, как следствие, программируются многими отечественными программаторами. Ряд российских фирм предлагает также различные аппаратные средства отладки AVR-микроконтроллеров.
Коротко резюмируя вышесказанное, можно отметить, что позиции PIC контроллеров наиболее сильны в сфере применений критичных к стоимости и потреблению. При построении высокопроизводительных, универсальных систем становятся предпочтительными AVR микроконтроллеры имеющие более высокое соотношение “цена-производительность “. Поскольку, как уже было отмечено, производительность является критичным параметром в данной разработке, то предпочтительней использовать именно микроконтроллер ATMEL AVR.
Для выбора воспользуемся информацией предлагаемой на сайтах технической поддержки [9, 10]. Искомый микроконтроллер должен иметь следующие параметры:
Данные для сравнения
Таблица 2.1.
Сравнительные характеристики микроконтроллеров MICROCHIP.
Наименование компонента |
Память программ, байт |
ОЗУ байт |
f, МГц |
Порты вв./выв. |
Послед. интерфейс |
АЦП/ЦАП |
ШИМ |
Таймеры |
Ориентировочная цена, у.е. |
PIC16C55 |
512x12 |
24 |
20 |
20 |
- |
-/- |
- |
1+WDT |
2-4 |
PIC16C55A |
512x12 |
24 |
20 |
20 |
- |
-/- |
- |
1+WDT |
2-4 |
PIC16C57 |
2048x12 |
72 |
20 |
20 |
- |
-/- |
- |
1+WDT |
3-4 |
PIC16C57C |
2048x12 |
72 |
20 |
20 |
- |
-/- |
- |
1+WDT |
3-4 |
PIC16C63 |
4096x14 |
192 |
20 |
22 |
USART/I2C/SPI |
-/- |
2 |
3+WDT |
3-4 |
PIC16C745 |
8192x14 |
256 |
24 |
19 |
USB, USART/SСI |
5/- |
2 |
3+WDT |
4-5 |
pic16f870 |
2048x14 |
128 |
20 |
22 |
USART |
5/- |
1 |
3+WDT |
4-5 |
pic16f873 |
4096x14 |
192 |
20 |
22 |
USART/MSSP |
5/- |
2 |
3+WDT |
4-5 |
pic16f876 |
8192x14 |
368 |
20 |
22 |
USART/MSSP |
5/- |
2 |
3+WDT |
4-5 |