Электрические аппараты

Автор работы: Пользователь скрыл имя, 11 Мая 2013 в 12:02, реферат

Описание

Электрические аппараты (ЭА) – это электротехнические устройства, применяемые при использовании электрической энергии, начиная от ее производства, передачи, распределения и кончая потреблением. Разнообразие видов ЭА и различие традиций мировых электротехнических школ затрудняют их классификацию.
В настоящее время под ЭА понимают электротехнические устройства управления потоком энергии и информации. При этом речь может идти о потоках энергии различного вида: электрической, механической, тепловой и др. Например, потоком механической энергии от двигателя к технологической машине может управлять электромагнитная муфта. Потоками тепловой энергии можно управлять при помощи электромагнитных клапанов и заслонок.

Работа состоит из  1 файл

Часть 1.doc

— 2.72 Мб (Скачать документ)

Снижение температуры ниже точки Кюри вновь возвращает материалу магнитные свойства: доменную структуру с нулевой результирующей намагниченностью, если при этом отсутствовало внешнее магнитное поле. Поэтому разогрев изделий из ферромагнитных материалов выше точки Кюри используют для их полного размагничивания.


 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 4.1. Кривая начального намагничивания

Процессы намагничивания ферромагнитных материалов подразделяются на обратимые и необратимые по отношению к изменению магнитного поля. Если после снятия возмущения внешнего поля намагниченность материала возвращается в исходное состояние, то такой процесс обратимый, в противном случае - необратимый. Обратимые изменения наблюдаются на малом начальном отрезке участка I кривой намагничивания (зона Релея) при малых смещениях доменных стенок и на участках II, III при повороте векторов намагниченности в доменах. Основная часть участка I относится к необратимому процессу перемагничивания, который в основном определяет гистерезисные свойства ферромагнитных материалов (отставание изменений намагниченности от изменений магнитного поля).

Петлей гистерезиса (рис. 4.2) называют кривые, отражающие изменение намагниченности ферромагнетика под воздействием циклически изменяющегося внешнего магнитного поля. При испытаниях магнитных материалов петли гистерезиса строятся для функций параметров магнитного поля В (Н) или М (Н), которые имеют смысл результирующих параметров внутри материала в проекции на зафиксированное направление.

Если материал предварительно был полностью размагничен, то постепенное  увеличение напряженности магнитного поля от нуля до Hs дает множество точек начальной кривой намагничивания (участок 0-1 на рис. 4.2). Точка 1 - точка технического насыщения (Вs, Hs). Последующее снижение напряженности Н внутри материала до нуля (участок 1-2) позволяет определить предельное (максимальное) значение остаточной намагниченности Br и дальнейшим уменьшением отрицательной напряженности поля добиться полного размагничивания B = 0 (участок 2-3) в точке Н = -НсВ - максимальной коэрцитивной силы по намагниченности. Далее материал перемагничивается в отрицательном направлении до насыщения (участок 3-4 ) при Н = - Hs. Изменение напряженности поля в положительную сторону замыкает предельный гистерезисный цикл по кривой 4-5-6-1.

Множество состояний  материала внутри предельного гистерезисного цикла может быть достигнуто при изменении напряженности магнитного поля, соответствующем частным симметричным и несимметричным гистерезисным циклам.


 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 4.2. Магнитный гистерезис: 1 – кривая начального намагничивания;  2 – предельный гистерезисный цикл;   3 – кривая основного намагничивания;   4 – симметричные частные циклы; 5 – несимметричные частные циклы

 

Частные симметричные гистерезисные  циклы опираются вершинами на  кривую основного намагничивания, которая и определяется как множество точек вершин этих циклов до совпадения с предельным циклом.

Частные несимметричные гистерезисные циклы образуются, если начальная точка не находится на кривой основного намагничивания при симметричном изменении напряженности поля, а также при несимметричном изменении напряженности поля в положительном или отрицательном направлении.

В зависимости от значений коэрцитивной силы ферромагнитные материалы  разделяют на магнитомягкие и магнитотвёрдые.

Магнитомягкие материалы используются в магнитных системах как магнитопроводы. Эти материалы имеют малую коэрцитивную силу, высокую магнитную проницаемость и индукцию насыщения.

Магнитотвёрдые материалы  имеют большую коэрцитивную силу и в предварительно намагниченном состоянии используются как постоянные магниты – первичные источники магнитного поля.

Существуют материалы, которые по магнитным свойствам  относятся к антиферромагнетикам. У них оказывается энергетически более выгодным антипараллельное расположение спинов соседних атомов. Созданы антиферромагнетики, обладающие значительным собственным магнитным моментом из-за асимметрии кристаллической решётки. Такие материалы называются ферримагнетиками (ферритами). В отличие от металлических ферромагнитных материалов, ферриты – полупроводники и в них значительно меньшие потери энергии на вихревые токи в переменных магнитных полях.

 

 

 

 

 

 

II. Основные электромеханические процессы

 

 

2.1. Коммутация  электрической цепи

Коммутация электрической цепи – процесс замыкания или размыкания цепи с током.

 Коммутация может  происходить под воздействием  внешних или внутренних для  данного устройства источников напряжения или тока.

При анализе и расчёте  процессов коммутации необходимо учитывать  общий закон коммутации:

  • При коммутации индуктивных электрических цепей не могут изменяться скачком ток цепи и магнитный поток ( );
  • При коммутации емкостных цепей не могут изменяться скачком напряжение и электрический заряд ( ).

Под глубиной коммутации понимают отношение сопротивления Rотк коммутирующего органа в отключенном состоянии к сопротивлению Rвкл во включенном состоянии

Контактные электрические  аппараты, у которых сопротивление  межконтактного промежутка в отключенном состоянии измеряется мегомами, а сопротивление замкнутых контактов – микроомами, обеспечивают глубину коммутации

Для бесконтактных аппаратов, которые по глубине коммутации уступают контактным аппаратам, обычно

 

 

2.1.1. Отключение электрической цепи контактными аппаратами

Отключение цепи контактным аппаратом характеризуется возникновением плазмы, которая проходит разные стадии газового разряда в процессе преобразования межконтактного промежутка из проводника электрического тока в изолятор.

При токах выше 0,5-1 А  возникает стадия дугового разряда (область 1) (рис. 2.1.); при снижении тока возникает стадия тлеющего разряда у катода (область 2); следующая стадия (область 3)– таунсендовский разряд, и наконец, область 4 – стадия изоляции, в которой носители электричества – электроны и ионы – не образуются за счет ионизации, а могут поступать только из окружающей среды.


 

 

 

 

 

 

 

 

 

Рис. 2.1. Вольтамперная характеристика стадий электрического разряда в газах

 

Первый участок кривой – дуговой разряд (область 1) –характеризуется малым падением напряжения у электродов и большой плотностью тока. С ростом тока напряжение на дуговом промежутке сначала резко падает, а затем изменяется незначительно.

Второй участок (область 2) кривой, представляющий собой область тлеющего разряда, характеризуется высоким падением напряжения у катода (250 – 300 В) и малыми токами. С ростом тока возрастет падение напряжения на разрядном промежутке.

Таунсендовский разряд (область 3) характеризуется чрезвычайно малыми значениями тока при высоких напряжениях.

Электрическая дуга сопровождается высокой температурой и связана  с этой температурой. Поэтому дуга – явление не только электрическое, но и тепловое.

В обычных условиях воздух является хорошим изолятором. Так, для  пробоя воздушного промежутка в 1 см требуется приложить напряжение не менее 30 кВ. Для того чтобы воздушный промежуток стал проводником, необходимо создать в нем определенную концентрацию заряженных частиц: отрицательных – в основном свободных электронов, и положительных – ионов. Процесс отделения от нейтральной частицы одного или нескольких электронов с образованием свободных электронов и ионов называется ионизацией.

Ионизация газа может  происходить под действием света, рентгеновских лучей, высокой температуры, под влиянием электрического поля и ряда других факторов. Для дуговых процессов в электрических аппаратах наибольшее значение имеют: из процессов, происходящих у электродов, – термоэлектронная и автоэлектронная эмиссии, а из процессов, происходящих в дуговом промежутке, – термическая ионизация и ионизация толчком.

 

 

2.1.2. Электрическая  дуга

В коммутационных электрических  аппаратах, предназначенных для замыкания и размыкания цепи с током, при отключении возникает разряд в газе либо в виде тлеющего разряда, либо в виде дуги. Тлеющий разряд возникает тогда, когда отключаемый ток ниже 0,1 А, а напряжение на контактах достигает величины 250 – 300 В. Такой разряд встречается либо на контактах маломощных реле, либо как переходная фаза к разряду в виде электрической дуги.

Основные свойства дугового разряда:

  • дуговой разряд имеет место только при токах большой величины; минимальный ток дуги для металлов составляет примерно 0,5 А;
  • температура центральной части дуги очень велика и в аппаратах может достигать 6000 – 18000 К;
  • плотность тока на катоде чрезвычайно велика и достигает 102 – 103 А/мм2;
  • падение напряжения у катода составляет всего 10 – 20 В и практически не зависит от тока.

В дуговом разряде  можно различить три характерные области: околокатодную, область столба дуги (ствол дуги) и околоанодную (рис. 2.2.).

В каждой из этих областей процессы ионизации и деионизации протекают по-разному в зависимости от условий, которые там существуют. Поскольку результирующий ток, проходящий через эти три области, одинаков, в каждой из них происходят процессы, обеспечивающие возникновение необходимого количества зарядов.


 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 2.2. Распределение  напряжения и напряжённости электрического поля

в стационарной дуге постоянного тока

 

Термоэлектронная  эмиссия. Термоэлектронной эмиссией называется явление испускания электронов из накаленной поверхности.

При расхождении контактов  резко возрастают переходное сопротивление  контакта и плотность  тока в последней  площадке контактирования. Эта площадка нагревается до температуры плавления и образования контактного перешейка из расплавленного металла, который при дальнейшем расхождении контактов рвется. Здесь происходит испарение металла контактов. На отрицательном электроде образуется так называемое катодное пятно (раскаленная площадка), которое служит  основанием дуги и очагом излучения электронов в первый момент расхождения контактов. Плотность тока термоэлектронной эмиссии зависит от температуры и материала электрода. Она невелика и может быть достаточной для возникновения электрической дуги, но она недостаточна для ее горения.

 

Автоэлектронная эмиссия. Это – явление испускания электронов из катода под воздействием сильного электрического поля.

Место разрыва электрической  цепи может быть представлено как  конденсатор переменной емкости. Емкость в начальный момент равна бесконечности, затем убывает по мере расхождения контактов. Через сопротивление цепи этот конденсатор заряжается, и напряжение на нем растет постепенно от нуля до напряжения сети. Одновременно увеличивается расстояние между контактами. Напряженность поля между контактами во время нарастания напряжения проходит через значения, превышающие 100 МВ/см. Такие значения напряженности электрического поля достаточны для вырывания электронов из холодного катода.

Ток автоэлектронной  эмиссии также весьма мал и  может служить только началом  развития дугового разряда.

Таким образом, возникновение  дугового разряда на расходящихся контактах объясняется наличием термоэлектронной и автоэлектронной эмиссий. Преобладание того или иного фактора зависит от значения отключаемого тока, материала и чистоты поверхности контактов, скорости их расхождения и от ряда других факторов.

 

Ионизация толчком. Если свободный электрон будет обладать достаточной скоростью, то при столкновении с нейтральной частицей (атом, а иногда и молекула) он может выбить из неё электрон. В результате получатся новый свободный электрон и положительный ион. Вновь полученный электрон может, в свою очередь, ионизировать следующую частицу. Такая ионизация носит название ионизации толчком.

Для того чтобы электрон мог ионизировать частицу газа, он должен двигаться с некоторой определенной скоростью. Скорость электрона зависит от разности потенциалов на длине его свободного пробега. Поэтому обычно указывается не скорость движения электрона, а то минимальное значение разности потенциалов, какое необходимо иметь на длине свободного пути, чтобы электрон к концу пути приобрел необходимую скорость. Эта разность потенциалов носит название потенциала ионизации.

Потенциал ионизации для газов составляет 13 – 16 В (азот, кислород, водород) и до 24,5 В (гелий), для паров металла он примерно в два раза ниже (7,7 В для паров меди).

 

Термическая ионизация. Это – процесс ионизации под воздействием высокой температуры.   Поддержание  дуги   после   ее возникновения, т.е. обеспечение возникшего дугового разряда достаточным числом свободных зарядов, объясняется основным и практически единственным видом ионизации – термической ионизацией.

Температура столба дуги с среднем равна 6000 – 10000 К, но может достигать и более высоких значений – до 18000 К. При такой температуре сильно возрастает как число быстро движущихся  частиц  газа, так и скорость их движения. При столкновении быстро движущихся атомов или молекул большая часть  их разрушается, образуя заряженные частицы, т.е. происходит ионизация газа. Основной характеристикой термической ионизации является степень ионизации, представляющая собой отношение числа ионизированных атомов в дуговом промежутке к общему числу атомов в этом промежутке. Одновременно с процессами ионизации в дуге происходят обратные процессы, т. е. воссоединение заряженных частиц и образование нейтральных частиц. Эти процессы носят название деионизации. 

Информация о работе Электрические аппараты