Электрические аппараты

Автор работы: Пользователь скрыл имя, 11 Мая 2013 в 12:02, реферат

Описание

Электрические аппараты (ЭА) – это электротехнические устройства, применяемые при использовании электрической энергии, начиная от ее производства, передачи, распределения и кончая потреблением. Разнообразие видов ЭА и различие традиций мировых электротехнических школ затрудняют их классификацию.
В настоящее время под ЭА понимают электротехнические устройства управления потоком энергии и информации. При этом речь может идти о потоках энергии различного вида: электрической, механической, тепловой и др. Например, потоком механической энергии от двигателя к технологической машине может управлять электромагнитная муфта. Потоками тепловой энергии можно управлять при помощи электромагнитных клапанов и заслонок.

Работа состоит из  1 файл

Часть 1.doc

— 2.72 Мб (Скачать документ)

Деионизация происходит главным образом за счет рекомбинации и диффузии.

 

Рекомбинация. Процесс, при котором различно заряженные частицы, приходя во взаимное соприкосновение, образуют нейтральные частицы, называется рекомбинацией.

В электрической дуге отрицательными частицами являются в основном электроны. Непосредственное соединение электронов с положительным ионом ввиду большой разности скоростей маловероятно. Обычно рекомбинация происходит при помощи нейтральной частицы, которую электрон заряжает. При соударении этой отрицательно заряженной частицы с положительным ионом образуется одна или две нейтральные частицы.

 

Диффузия. Диффузия заряженных частиц представляет собой процесс выноса заряженных частиц из дугового промежутка в окружающее пространство, что уменьшает проводимость дуги.

Диффузия обусловлена как электрическими, так и тепловыми факторами. Плотность зарядов в столбе дуги возрастает от периферии к центру. Ввиду этого создается электрическое поле, заставляющее ионы двигаться от центра к периферии и покидать область дуги. В этом же направлении действует и разность температур столба дуги и окружающего пространства. В стабилизированной и свободно горящей дуге диффузия играет ничтожно малую роль.

Падение напряжения на стационарной дуге распределяется неравномерно вдоль  дуги. Картина изменения падения напряжения UД и напряжённости электрического поля (продольного градиента напряжения) ЕД = dU/dx вдоль дуги приведена на рисунке (см. рис 2.2). Под градиентом напряжения ЕД понимается падение напряжения на единицу длины дуги. Как видно из рисунка, ход характеристик UД и ЕД в приэлектродных областях резко отличается от хода характеристик на остальной части дуги. У электродов, в прикатодной и прианодной областях, на промежутке длины порядка 10– 4 см имеет место резкое падение напряжения, называемое катодным Uк и анодным Uа. Значение этого падения напряжения зависит от материала электродов и окружающего газа. Суммарное значение прианодного и прикатодного падений напряжений составляет 15 – 30 В, градиент напряжения достигает 105 – 106 В/см.

В остальной части дуги, называемой столбом дуги, падение напряжения UД практически прямо пропорционально длине дуги. Градиент здесь приблизительно постоянен вдоль ствола. Он зависит от многих факторов и может изменяться в широких пределах, достигая 100 – 200 В/см.

Околоэлектродное падение  напряжения UЭ не зависит от длины дуги, падение напряжения в столбе дуги пропорционально длине дуги. Таким образом, падение напряжения на дуговом промежутке

UД = UЭ + ЕД lД,

где:  ЕД – напряжённость электрического поля в столбе дуги;

  lД – длина дуги; UЭ = Uк + Uа.

В заключение следует  ещё раз отметить, что в стадии дугового разряда преобладает термическая ионизация – разбиение атомов на электроны и положительные ионы за счёт энергии теплового поля. При тлеющем – возникает ударная ионизация у катода за счет соударения с электронами, разгоняемыми электрическим полем, а при таунсендовском разряде ударная ионизация преобладает на всём промежутке газового разряда.

 

2.1.3. Статическая  вольтамперная характеристика электрической

дуги постоянного тока

Важнейшей характеристикой  дуги является зависимость напряжения на ней от величины тока. Эта характеристика называется вольтамперной. С ростом тока i увеличивается температура дуги, усиливается термическая ионизация, возрастает число ионизированных частиц в разряде и падает электрическое сопротивление дуги rд.

Напряжение на дуге равно irд. При увеличении тока сопротивление дуги уменьшается так резко, что напряжение на дуге падает, несмотря на то, что ток в цепи возрастает. Каждому значению тока в установившемся режиме соответствует свой динамический баланс числа заряженных частиц.

При переходе от одного значения тока к другому тепловое состояние  дуги не изменяется мгновенно. Дуговой промежуток обладает тепловой инерцией. Если ток изменяется во времени медленно, то тепловая инерция разряда не сказывается. Каждому значению тока соответствует однозначное значение сопротивления дуги или напряжения на ней.

Зависимость напряжения на дуге от тока при медленном его изменении называется статической вольтамперной характеристикой дуги.

Статическая характеристика дуги зависит от расстояния между электродами (длины дуги), материала электродов и параметров среды, в которой горит дуга.

Статические вольтамперные характеристики дуги имеют вид кривых, изображенных на рис. 2.3.


 

 

 

 

 

 

 

 

 

 

 

Рис. 2.3. Статические  вольтамперные характеристики дуги

 

 Чем больше длина  дуги, тем выше лежит ее статическая  вольтамперная характеристика. С ростом давления среды, в которой горит дуга, также увеличивается напряженность ЕД и поднимается вольтамперная характеристика аналогично рис. 2.3.

Охлаждение дуги существенно  влияет на эту характеристику. Чем интенсивнее охлаждение дуги, тем больше от нее отводится мощность. При этом должна возрасти мощность, выделяемая дугой. При заданном токе это возможно за счет увеличения напряжения на дуге. Таким образом, с ростом охлаждения вольтамперная характеристика располагается выше. Этим широко пользуются в дугогасительных устройствах аппаратов.

 

 

2.1.4. Динамическая  вольтамперная характеристика электрической

дуги постоянного тока

Если ток в цепи изменяется медленно, то току i1 соответствует сопротивление дуги rД1, а большему току i2 соответствует меньшее сопротивление rД2, что отражено на рис 2.4. (см. статическую характеристику дуги – кривая А).


 

 

 

 

 

 

 

 

 

Рис. 2.4. Динамическая вольтамперная  характеристика дуги.

В реальных установках ток  может меняться довольно быстро. Вследствие тепловой инерции дугового столба изменение сопротивления дуги отстает от изменения тока.

Зависимость напряжения на дуге от тока при быстром его изменении называется динамической вольтамперной характеристикой.

При резком возрастании  тока динамическая характеристика идет выше статической (кривая В), так как при быстром росте тока сопротивление дуги падает медленнее, чем растет ток. При  уменьшении – ниже,   поскольку в этом режиме сопротивление дуги меньше, чем при медленном изменении тока (кривая С).

Динамическая характеристика в значительной степени определяется скоростью изменения тока в дуге. Если в цепь ввести очень большое сопротивление за время, бесконечно малое по сравнению с тепловой постоянной времени дуги, то в течение времени спада тока до нуля сопротивление дуги останется постоянным. В этом случае динамическая характеристика изобразится прямой, проходящей из точки 2 в начало координат   (прямая D), т. е. дуга ведет себя как металлический проводник, так как напряжение на дуге пропорционально току.

 

2.1.5. Условия  гашения дуги постоянного тока

Чтобы погасить электрическую  дугу постоянного тока, необходимо создать такие условия, чтобы в дуговом промежутке при всех значениях тока процессы деионизации протекали бы интенсивнее, чем процессы ионизации.


 

 

 

 

 

 

 

 

 

 

 

Рис. 2.5. Баланс напряжений в цепи с электрической дугой.

Рассмотрим электрическую цепь, содержащую сопротивление R, индуктивность L и дуговой промежуток с падением напряжения UД, к которой приложено напряжение U (рис. 2.5, а). При дуге, имеющей неизменную длину, для любого момента времени будет справедливо уравнение баланса напряжений в этой цепи:

где падение напряжения на индуктивности при изменении тока.

Стационарным режимом  будет такой, при котором ток  в цепи не меняется, т.е. а уравнение баланса напряжений примет вид:

Для погасания электрической  дуги необходимо, чтобы ток в ней  всё время уменьшался, т.е. , а

Графическое решение  уравнения баланса напряжений представлено на рис. 2.5, б. Здесь прямая 1 представляет собой напряжение источника U; наклонная прямая 2 – падение напряжения на сопротивлении R (реостатная характеристика цепи), вычитаемое из напряжения U, т.е. U – iR; кривая 3 – вольтамперную характеристику дугового промежутка UД.

2.1.6. Особенности электрической дуги переменного тока

Если для гашения  дуги постоянного тока необходимо создать  такие условия, при которых ток упал бы до нуля, то при переменном токе ток в дуге независимо от степени ионизации дугового промежутка переходит через нуль каждый полупериод, т.е. каждый полупериод дуга гаснет и зажигается вновь. Задача гашения дуги существенно облегчается. Здесь необходимо создать условия, при которых ток не восстановился бы после прохождения через нуль.

 

 


 

 

 

 

 

 

 

Рис. 2.6. Процесс отключения цепи переменного тока

 

 

Вольтамперная характеристика дуги переменного тока за один период приведена на рис. 2.7. Поскольку, даже при промышленной частоте 50 Гц, ток в дуге меняется достаточно быстро, то представленная характеристика является динамической. При синусоидальном токе напряжение на дуге сначала увеличивается на участке 1, а затем, в связи с ростом тока, падает на участке 2 (участки 1 и 2 относятся к первой половине полупериода). После прохождения тока через максимум динамическая ВАХ возрастает по кривой 3 в связи с уменьшением тока, а затем уменьшается на участке 4 в связи с приближением напряжения к нулю (участки 3 и 4 относятся ко второй половине этого же полупериода).

 


 

 

 

 

 

 

Рис. 2.7. Вольтамперная  характеристика дуги переменного тока

 

 

При переменном токе температура дуги является величиной переменной. Однако тепловая инерция газа оказывается довольно значительной, и к моменту перехода тока через нуль температура дуги хотя и уменьшается, но остаётся достаточно высокой. Всё же имеющее место снижение температуры при переходе тока через нуль способствует деионизации промежутка и облегчает гашение электрической дуги переменного тока.

 

 

 

2.1.7. Электрическая  дуга в магнитном поле

Электрическая дуга является газообразным проводником тока. На этот проводник, так же как на металлический, действует магнитное поле, создавая силу, пропорциональную индукции поля и току в дуге. Магнитное поле, действуя на дугу, увеличивает ее длину и перемещает элементы дуги в пространстве.

Поперечное перемещение  элементов дуги создает интенсивное охлаждение, что приводит к повышению градиента напряжения на столбе дуги.

При движении дуги в среде  газа с большой скоростью возникает расслоение дуги на отдельные параллельные волокна. Чем длиннее дуга, тем сильнее происходит расслоение дуги.

Дуга является чрезвычайно  подвижным проводником. Известно, что  на токоведущую часть действуют такие силы, которые стремятся увеличить электромагнитную энергию контура. Поскольку энергия пропорциональна индуктивности, то дуга под действием своего собственного поля стремится образовывать витки, петли, так как при этом возрастает индуктивность цепи. Эта способность дуги тем сильнее, чем больше ее длина.

Движущаяся в воздухе  дуга преодолевает аэродинамическое сопротивление воздуха, которое зависит от диаметра дуги, расстояния между электродами, плотности газа и скорости движения. Опыт показывает, что во всех случаях в равномерном магнитном поле дуга движется с постоянной скоростью. Следовательно, электродинамическая сила уравновешивается силой аэродинамического сопротивления.

С целью создания эффективного охлаждения дуга с помощью магнитного поля втягивается в узкую (диаметр дуги больше ширины щели) щель между стенками из дугостойкого материала с высокой теплопроводностью. Из-за увеличения теплоотдачи стенкам щели градиент напряжения в столбе дуги при наличии узкой щели значительно выше, чем у дуги, свободно перемещающейся между электродами. Это дает возможность сократить необходимую для гашения длину и время гашения.

 

2.1.8. Способы воздействия на электрическую дугу в коммутационных аппаратах

Цель воздействия на столб возникающей в аппарате дуги состоит в увеличении её активного электрического сопротивления вплоть до бесконечности, когда коммутационный орган переходит в изоляционное состояние. Практически всегда это достигается путем интенсивного охлаждения столба дуги, уменьшения её температуры и теплосодержания, в результате чего снижается степень ионизации и количество носителей электричества и ионизированных частиц и повышается электрическое сопротивление плазмы.

Для успешного гашения  электрической дуги в коммутационных низковольтных аппаратах необходимо выполнить следующие условия:

  • увеличить длину дуги путем её растяжения или увеличения числа разрывов на полюс выключателя;
  • переместить дугу на металлические пластины дугогасительной (деионной) решётки, которые являются как радиаторами, поглощающими тепловую энергию столба дуги, так и разбивают её на ряд последовательно соединённых дуг;
  • переместить столб дуги магнитным полем в щелевую камеру из дугостойкого изоляционного материала с большой теплопроводностью, где дуга интенсивно охлаждается, соприкасаясь со стенками;
  • образовывать дугу в закрытой трубке из газогенерирующего материала – фибры; выделяемые под воздействием температуры газы создают высокое давление, что способствует гашению дуги;
  • уменьшить концентрацию паров металлов в дуге, для чего на этапе проектирования аппаратов использовать соответствующие материалы;
  • гасить дугу в вакууме; при очень низком давлении газа недостаточно атомов газа, чтобы ионизировать их и поддержать проведение тока в дуге; электрическое сопротивление канала столба дуги становится очень высоким и дуга гаснет;
  • размыкать контакты синхронно перед переходом переменного тока через нуль, что существенно снижает выделение тепловой энергии в образовавшейся дуге, т.е. способствует гашению дуги;
  • применять чисто активные сопротивления, шунтирующие дугу и облегчающие условия её гашения;
  • применять шунтирующие межконтактный промежуток полупроводниковые элементы, переключающие на себя ток дуги, что практически исключает образование дуги на контактах.

Информация о работе Электрические аппараты