Автор работы: Пользователь скрыл имя, 11 Мая 2013 в 12:02, реферат
Электрические аппараты (ЭА) – это электротехнические устройства, применяемые при использовании электрической энергии, начиная от ее производства, передачи, распределения и кончая потреблением. Разнообразие видов ЭА и различие традиций мировых электротехнических школ затрудняют их классификацию.
В настоящее время под ЭА понимают электротехнические устройства управления потоком энергии и информации. При этом речь может идти о потоках энергии различного вида: электрической, механической, тепловой и др. Например, потоком механической энергии от двигателя к технологической машине может управлять электромагнитная муфта. Потоками тепловой энергии можно управлять при помощи электромагнитных клапанов и заслонок.
Несмотря на эти недостатки, благодаря высокой надежности при гашении номинальных и больших токов система с катушкой тока получила преимущественное распространение.
В параллельной системе катушка магнитного дутья подключается к независимому источнику питания. Магнитная индукция, создаваемая системой, постоянна и не зависит от отключаемого тока.
Сила, действующая на дугу согласно (**), пропорциональна отключаемому току
F2=k2I
На рис.5 изображена эта зависимость (кривая 5) для случая, когда м. д. с. катушки тока при номинальном токе равна м. д. с. катушки напряжения. При токах от 0 до Iн сила, действующая на дугу, при катушке напряжения получается большей, чем при катушке тока, — прямая 5 идет выше параболы 4. Это позволяет резко снизить длительность горения дуги в области малых токов. При токах, больших Iн, сила, действующая на дугу, при катушке тока больше, чем при катушке напряжения. Однако для гашения это не имеет существенного значения, так как решающими являются силы, возникающие в самом контуре дуги.
Зависимость времени гашения дуги от тока для системы с катушкой напряжения приведена на рис.5 (кривая 3).
Поскольку в области малых токов катушка напряжения действует более эффективно, чем катушка тока, при одной и той же длительности горения дуги требуется меньшая м. д. с., что дает экономию. Однако катушки напряжения имеют и ряд существенных недостатков:
1. Направление электродинамической силы, действующей на дугу, зависит от полярности тока. При изменении направления тока дуга меняет направление своего движения. Контактор не может работать при перемене полярности тока.
2.Поскольку, к катушке прикладывается напряжение источника питания, изоляция должна быть рассчитана на это напряжение. Катушка выполняется из тонкого провода. Близость дуги к такой катушке делает ее работу ненадежной (расплавленный металл контактов может попадать на катушку).
3. При коротких замыканиях возможно снижение напряжения на источнике, питающем катушку. В результате процесс гашения дуги идет неэффективно.
В связи с указанными недостатками системы с катушкой напряжения в настоящее время применяются только в случаях, когда необходимо отключать небольшие токи — от 5 до 10 А. В аппаратах на большие силы тока эта система не применяется.
Система с постоянным магнитом по существу мало отличается по своей характеристике от системы с катушкой напряжения. Магнитное поле создается за счет постоянного магнита. По сравнению с системами, где поле создается обмотками, постоянный магнит имеет ряд преимуществ:
1. Нет затраты энергии на создание магнитного поля;
2. Резко сокращается расход меди на контактор;
3. Отсутствует подогрев контактов от катушки, как это имеет место в системе с катушкой тока;
обладает высокой надежностью и хорошо работает при любых токах.
В силу своих преимуществ эта система, очевидно, в дальнейшем будет широко использоваться. Магнитное поле, действующее на дугу, создает силу, которая перемещает дугу в дугогасительную камеру. Назначение камеры — локализовать область, занятую раскаленными газами дуги, препятствовать перекрытию между соседними полюсами. При соприкосновении дуги со стенками камеры происходит интенсивное охлаждение дуги, что приводит к подъему вольт-амперной характеристики и успешному гашению. Исследования О. Б. Брона показали, что в качестве материала необходимо применять дугостойкую керамику.
Наиболее совершенной является лабиринтно-щелевая камера. Под действием магнитного поля дуга загоняется в суживающуюся зигзагообразную щель (рис.6,б). Благодаря увеличению длины дуги и хорошему тепловому контакту дуги со стенками камеры происходит ее эффективное гашение. По сравнению с обычной продольной щелью (рис.6, а) зигзагообразная щель уменьшает количество выброшенных из камеры раскаленных газов и, следовательно, зону выхлопа.
Рис.6. Дугогасительные камеры контакторов постоянного тока.
Электромагнитная система. Электромагнитная система обеспечивает дистанционное управление контактором, т.е. включение и отключение. В контакторах с приводом на постоянном токе преимущественное распространение получили электромагниты клапанного типа.
С целью повышения
механической износостойкости в
современных контакторах примен
Для получения вибро- и ударостойкости подвижная система контактора должна быть уравновешена относительно оси вращения. Типичным примером является электромагнит контактора серии КПВ-600 (рис.1). Якорь магнита уравновешивается хвостом, на котором укрепляется подвижный контакт. Возвратная пружина также действует на хвост якоря. Катушка электромагнита наматывается на тонкостенную изолированную стальную гильзу. Такая конструкция катушки обеспечивает хорошую прочность и улучшает тепловой контакт катушки с сердечником. Последнее способствует снижению температуры катушки и уменьшению габарита контактора.
При включении электромагнит преодолевает действие силы возвратной и контактной пружин. Тяговая характеристика электромагнита должна во всех точках идти выше характеристики противодействующих пружин при минимальном допустимом напряжении на катушке (0,85 Uн) и нагретой катушке. Включение должно происходить при всё время нарастающей скорости. Не должно быть замедления в момент, замыкания главных контактов.
Рис.7. Противодействующая характеристика для контактора на рис.1.
Характеристика
Наиболее тяжелым моментом при включении является преодоление силы в момент касания главных контактов, так как электромагнит должен развивать значительное усилие при большом рабочем зазоре. Важным параметром механизма является коэффициент возврата kВ = Uотн/Uср. Для контакторов постоянного тока kВ, как правило, мал (0,2—0,3), что не позволяет использовать контактор для защиты двигателя от снижения напряжения.
Наибольшее напряжение на катушке не должно превышать 110% Uн, так как при большем напряжении увеличивается износ из-за усиления ударов якоря, а температура обмотки может превысить допустимую величину.
Следует отметить, что с целью уменьшения м. д. с. обмотки, а, следовательно, и потребляемой ею мощности рабочий ход якоря выбирается небольшим (8—10) 10-3м. В связи с тем, что для надежного гашения дуги при малых токах требуется раствор контактов (17—20)10-3 м, расстояние точки касания подвижного контакта от оси вращения подвижной системы берется в 1,5—2 раза больше, чем расстояние от оси полюса до оси вращения.
3.3. Особенности устройства и работы контактора переменного тока.
Коммутирующее устройство. Контакторы переменного тока выпускаются на токи от 100 до 630 А. Число главных контактов колеблется от одного до пяти. Это отражается на конструкции всего аппарата в целом. Наиболее широко распространены контакторы трехполюсного исполнения. Наличие большого числа контактов приводит к увеличению усилия и соответственно момента, необходимых для включения аппарата.
На рис.8, а представлен разрез контактора КТ-6000 по магнитной системе, а на рис.8, б — по контактной и дугогасительной системам одного полюса. Подвижный контакт 1 с пружиной 2 ук