Автор работы: Пользователь скрыл имя, 15 Апреля 2013 в 16:45, реферат
Фракция смазочных масел часто содержит большие количества алканов с длинной цепью (С20 - С24), которые имеют довольно высокие температуры плавления. Если они остаются в масле, то при холодной погоде они могут кристаллизоваться с образованием воскообразных твердых веществ. Чтобы предотвратить это, масло охлаждают и воск отделяют фильтрованием. После очистки получают твердый парафин (т. пл. 50-55ºС), который можно использовать для получения вазелина. Асфальт используют при строительстве крыш и дорог. Нефтяной кокс, получаемый из остатка от перегонки нефти, состоит из сложных углеводородов, в которых отношение углерод : водород велико; он находит применение как топливо, а также в производстве угольных электродов для электрохимической промышленности.
Введение
Алканами называются предельные (насыщенные) углеводороды, содержащие только простые связи С-С. Названия простейших алканов сложились исторически, для остальных - производятся от греческих числительных добавлением суффикса - ан.
Самым простым алканом является метан СН4. Другие алканы можно рассматривать как образованные из метана введением одной или более метиленовых групп СН2 между углеродным и водородными атомами метана. Общая формула алканов СnH2n+2.
Алканы представляют собой бесцветные вещества, в обычных условиях газообразные или жидкие. Алканы с большим числом углеродных атомов являются твердыми веществам. Многие жидкие алканы имеют слабый характерный «бензиновый» запах. Алканы намного легче воды.
Основными источниками алканов служит нефть и сопутствующий ей природный газ. Гниение и миллионы лет геологических преобразований превратили сложные органические соединения, из которых состояли растения и животные, в смесь алканов, имеющих в своем составе от одного до 30-40 атомов углерода. Одновременно с алканами образовывались и циклоалканы, которые присутствуют в значительном количестве, например в калифорнийской нефти.
Природный газ содержит только более летучие алканы, т.е. алканы с низким молекулярным весом; в основном он состоит из метана и значительно меньших количеств этана, пропана и высших алканов.
Фракционной перегонкой нефти получают различные фракции; поскольку температура кипения зависит от молекулярного веса, перегонка приводит к грубому разделению алканов в зависимости от числа атомов углерода. Каждая фракция представляет собой очень сложную смесь алканов с различным числом атомов углерода, и каждый алкан представлен несколькими изомерами. Использование каждой фракции зависит главным образом от ее летучести или вязкости и очень мало от того, является ли она сложной смесью или чистым соединением.
Все нелетучие фракции используются в основном как топливо. Газовая фракция, как и природный газ, применяется в основном также как топливо. Бензин используется в двигателях внутреннего сгорания, работающих на летучем топливе, керосин - в тракторах и форсунках реактивных двигателей, а соляровое масло - в дизелях. Керосин и соляровое масло находят также применение как топливо.
Фракция смазочных масел часто содержит большие количества алканов с длинной цепью (С20 - С24), которые имеют довольно высокие температуры плавления. Если они остаются в масле, то при холодной погоде они могут кристаллизоваться с образованием воскообразных твердых веществ. Чтобы предотвратить это, масло охлаждают и воск отделяют фильтрованием. После очистки получают твердый парафин (т. пл. 50-55ºС), который можно использовать для получения вазелина. Асфальт используют при строительстве крыш и дорог. Нефтяной кокс, получаемый из остатка от перегонки нефти, состоит из сложных углеводородов, в которых отношение углерод : водород велико; он находит применение как топливо, а также в производстве угольных электродов для электрохимической промышленности.
Петролейный эфир и лигроин являются хорошими растворителями для многих малополярных органических соединений. Кроме того, некоторые петролейные фракции используют для синтеза других соединений. В результате крекинга высшие алканы превращаются в алканы и алкены с меньшим молекулярным весом; таким образом, повышается выход бензина. Кроме того, образующиеся при крекинге алкены служат важным сырьем для синтеза алифатических соединений в больших масштабах. В результате каталитического реформинга алканы и циклоалканы превращаются в ароматические углеводороды, используемые в качестве сырья для синтеза другого обширного класса органических соединений.
Алканы являются не только простым и относительно дешевым топливом, но и исходным сырьем для крупнотоннажного производства. Полученные из нефти смеси алканов и других углеводородов применяются в качестве моторного топлива для двигателей внутреннего сгорания и реактивных двигателей.
Основная часть
Нахождение в природе
В небольших количествах алканы содержатся в атмосфере внешних газовых планет Солнечной системы, как-то: на Юпитере — 0,1% метана, 0,0002% этана, на Сатурне метана 0,2%, а этана — 0,0005%, метана и этана на Уране — соответственно 1,99% и 0,00025%, на Нептуне же — 1,5% и 1,5·10-10, соответственно.[1] На спутнике Сатурна Титане метан (1,6%) содержится в жидком виде, причем, подобно воде, находящейся на Земле в круговороте, на Титане существуют (полярные) озёра метана (в смеси с этаном) и метановые дожди. К тому же, как предполагается, метан поступает в атмосферу Титана в результате деятельности вулкана. Кроме того, метан найден в хвосте кометы Хиякутаке и в метеоритах (углистых хондритах). Предполагается также, что метановые и этановые кометные льды образовались в межзвёздном пространстве.
Нахождение на Земле (Добыча нефти)
В земной атмосфере метан присутствует в очень небольших количествах (около 0,0001%), он производится некоторыми археями (архебактериями), в частности, находящимися в кишечном тракте крупного рогатого скота. Промышленное значение имеют месторождения низших алканов в форме природного газа, нефти и, вероятно, в будущем — газовых гидратов (найдены в областях вечной мерзлоты и под океанами). Также метан содержится в биогазе.
Высшие алканы содержатся в кутикуле растений, предохраняя их от высыхания, паразитных грибков и мелких растительноядных тварей. Это обыкновенно цепи с нечётным числом атомов углерода, образующиеся при декарбоксилировании жирных кислот с чётным количеством углеродных атомов. Среди животных алканы встречаются в качестве феромонов у насекомых, в частности у мухи цеце (2-метилгептадекан C18H38, 17,21-
диметилгептатриаконтан
C39H80, 15,19-диметилгептатриаконтан C39H80 и
15,19,23-
Гомологический ряд алканов
Алканы, имея общую формулу СnH2n+2, представляют собой ряд родственных соединений с однотипной структурой, в котором каждый последующий член отличается от предыдущего на постоянную группу атомов (-CH2-). Такая последовательность соединений называется гомологическим рядом (от греч. homolog – сходный), отдельные члены этого ряда – гомологами, а группа атомов, на которую различаются соседние гомологи, – гомологической разностью.
Гомологический ряд алканов легко составить, прибавляя каждый раз к предыдущей цепочке новый атом углерода и дополняя его оставшиеся валентности до 4-х атомами водорода. Другой вариант – добавление в цепь группы -СН2-
Гомологический ряд алканов (первые 10 членов)
Метан CH4 CH4
Этан CH3—CH3 C2H6
Пропан CH3—CH2—CH3 C3H8
н-Бутан CH3—CH2—CH2—CH3 C4H10
н-Пентан CH3—CH2—CH2—CH2—CH3 C5H12
н-Гексан CH3—CH2—CH2—CH2—CH2—
н-Гептан CH3—CH2—CH2—CH2—CH2—
н-Октан CH3—CH2—CH2—CH2—CH2—
н-Нонан CH3—CH2—CH2—CH2—CH2—
н-Декан CH3—CH2—CH2—CH2—CH2—
Физические свойства алканов
Температуры плавления и кипения увеличиваются с молекулярной массой и длиной главной углеродной цепи
При нормальных условиях неразветвлённые алканы с -
CH4 до C4H10 — газы;
с C5H12 до C13H28 — жидкости;
после C14H30 — твёрдые тела.
Температуры плавления и кипения понижаются от менее разветвленных к более разветвленным. Так, например, при 20 °C н-пентан — жидкость, а неопентан — газ.
Газообразные алканы горят бесцветным или бледно-голубым пламенем с выделением большого количества тепла. Физические свойства нормальных алканов:
В ИК-спектрах алканов
четко проявляются частоты
УФ-спектроскопия
Чистые алканы не поглощают в ультрафиолетовой области выше 2000 Å и по этой причине часто оказываются отличными растворителями для снятия УФ-спектров других соединений.
Строение алканов
Химическое строение (порядок соединения атомов в молекулах) простейших алканов – метана, этана и пропана – показывают их структурные формулы, приведенные в разделе 1. Из этих формул видно, что в алканах имеются два типа химических связей:
С–С и С–Н.
Связь С–С является ковалентной неполярной. Связь С–Н - ковалентная слабополярная, т.к. углерод и водород близки по электроотрицательности (2.5 - для углерода и 2.1 - для водорода). Образование ковалентных связей в алканах за счет общих электронных пар атомов углерода и водорода можно показать с помощью электронных формул:
Электронные и структурные формулы отражают химическое строение, но не дают представления о пространственном строении молекул, которое существенно влияет на свойства вещества.
Пространственное строение, т.е. взаимное расположение атомов молекулы в пространстве, зависит от направленности атомных орбиталей (АО) этих атомов. В углеводородах главную роль играет пространственная ориентация атомных орбиталей углерода, поскольку сферическая 1s-АО атома водорода лишена определенной направленности.
Пространственное расположение АО углерода в свою очередь зависит от типа его гибридизации. Насыщенный атом углерода в алканах связан с четырьмя другими атомами. Следовательно, его состояние соответствует sp3-гибридизации В этом случае каждая из четырех sp3-гибридных АО углерода участвует в осевом (σ-) перекрывании с s-АО водорода или с sp3-АО другого атома углерода, образуя σ-связи С-Н или С-С.
Четыре σ-связи углерода
направлены в пространстве под углом
109о28', что соответствует наименьшему
отталкиванию электронов. Поэтому молекула
простейшего представителя
Валентный угол Н-С-Н равен 109о28'. Пространственное строение метана можно показать с помощью объемных (масштабных) и шаростержневых моделей.
Для записи удобно использовать пространственную (стереохимическую) формулу.
В молекуле следующего гомолога – этана С2Н6 – два тетраэдрических sp3-атома углерода образуют более сложную пространственную конструкцию:
Для молекул алканов, содержащих свыше 2-х атомов углерода, характерны изогнутые формы. Это можно показать на примере н-бутана (VRML-модель) или н-пентана.
Изомерия алканов
Изомерия – явление существования соединений, которые имеют одинаковый состав (одинаковую молекулярную формулу), но разное строение. Такие соединения называются изомерами.
Различия в порядке соединения атомов в молекулах (т.е. в химическом строении) приводят к структурной изомерии. Строение структурных изомеров отражается структурными формулами. В ряду алканов структурная изомерия проявляется при содержании в цепи 4-х и более атомов углерода, т.е. начиная с бутана С4Н10.
Если в молекулах
одинакового состава и
В этом случае использование структурных формул недостаточно и следует применять модели молекул или специальные формулы - стереохимические (пространственные) или проекционные.
Алканы, начиная с этана H3C–СН3, существуют в различных пространственных формах (конформациях), обусловленных внутримолекулярным вращением по σ-связям С–С, и проявляют так называемую поворотную (конформационную) изомерию.
Кроме того, при наличии в молекуле атома углерода, связанного с 4-мя различными заместителями, возможен еще один вид пространственной изомерии, когда два стереоизомера относятся друг к другу как предмет и его зеркальное изображение (подобно тому, как левая рука относится к правой). Такие различия в строении молекул называют оптической изомерией.
Структурная изомерия алканов
Структурные изомеры - соединения одинакового состава, отличающиеся порядком связывания атомов, т.е. химическим строением молекул.
Причиной проявления структурной изомерии в ряду алканов является способность атомов углерода образовывать цепи различного строения. Этот вид структурной изомерии называется изомерией углеродного скелета.
Например, алкан состава C4H10 может существовать в виде двух структурных изомеров:
Алкан С5Н12 – в виде трех структурных изомеров, отличающихся строением углеродной цепи:
С увеличением числа атомов углерода в составе молекул увеличиваются возможности для разветвления цепи, т.е. количество изомеров растет с ростом числа углеродных атомов.
Структурные изомеры отличаются физическими свойствами. Алканы с разветвленным строением из-за менее плотной упаковки молекул и, соответственно, меньших межмолекулярных взаимодействий, кипят при более низкой температуре, чем их неразветвленные изомеры.
Информация о работе Синтезы на основе предельных углеводородов