Лекции по "Концепции современного естествознания"

Автор работы: Пользователь скрыл имя, 20 Июня 2011 в 20:30, курс лекций

Описание

Естественные и гуманитарные науки. Наука занимается изучением объективно существующих ( т.е. существующих независимо от чьего-либо сознания) объектов и явлений природы. Вопрос о том, существует ли окружающий нас мир сам по себе или он является продуктом деятельности разума (принадлежащего некому высшему существу или каждому конкретному индивиду) составляет суть т.н. основного вопроса философии, классически формулируемом в виде дилеммы о первичности материи или сознания.

Работа состоит из  1 файл

Концепции современнго естествознания (лекции).DOC

— 1.51 Мб (Скачать документ)

     Несоответствие уравнений закону сохранения заряда было достаточным аргументом для того, чтобы усомниться в их истинности, поскольку законы сохранения носят весьма общий характер. Оказалось, что существует множество способов видоизменения системы уравнений (7), (10), приводящих их в соответствие с законом сохранения. Максвеллом был выбран простейший из возможных путь, приводящий систему к симметричному виду в случае ее использования для описания полей в пустом пространстве. В последнее уравнение было добавлено слагаемое, описывающее возможность генерации вихревого магнитного поля изменяющимся электрическим (“ток смещения”):

(11)                        .

     Чисто математическими следствиями из видоизмененной системы уравнений Максвелла были утверждение о сохранении энергии в электромагнитных процессах и теоретический вывод о возможности независимого от зарядов и токов существования поля в виде электромагнитных волн в пустом пространстве. Это последнее предсказание нашло блестящее экспериментальное подтверждение в знаменитых опытах Герца и Попова, положивших основу современной радиосвязи. Рассчитываемая из системы  (11) скорость распространения электромагнитных волн оказалась равной экспериментально измеренной скорости распространения света в вакууме, что означало объединение практически ранее независимых разделов физики электромагнетизма и оптики в одну законченную теорию.

     Проблема существования магнитного монополя. Колоссальный успех теории Максвелла продемонстрировал возможность теоретического поиска новых законов природы на основе анализа математических уравнений, описывающих ранее известные закономерности, с обязательной экспериментальной проверкой таким образом “угадываемых” результатов.

     Симметричная для описания электромагнитных полей в пустом пространстве система уравнений Максвелла (11) существенно “теряет свою красоту”  при учете электрических зарядов и токов: создаваемое электрическими зарядами потенциальное поле Е не имеет аналога в магнитных взаимодействиях. Эта ассиметрия послужила поводом для постановки множества экспериментов по поиску магнитных монополей (или магнитных зарядов) - гипотетических частиц, являющихся источником потенциального магнитного поля и теоретических исследований их предполагаемых свойств. До настоящего времени надежных экспериментальных данных о существовании магнитных монополей не получено.

     Противоречия между электродинамикой и классической физикой. Сформулированные в виде законченной теории и выдержавшие экспериментальную проверку законы электромагнетизма Максвелла оказались в противоречии с принципами, лежащими в основе классического миропонимания Галлилея - Ньютона:

1. Удовлетворяющие принципу относительности Галилея классические силы могут зависеть от времени, расстояний между телами и их относительных скоростей, т.е. величин, не изменяющихся при переходе из одной инерциальной системы отсчета в другую. Магнитостатические поля и связанные с ними силы Лоренца являются функциями скоростей зарядов по отношению к наблюдателю и различны в разных инерциальных системах отсчета. Т.о. явления природы, обусловленные электромагнитными взаимодействиями, с точки зрения классической физики в различных инерциальных системах отсчета должны протекать по-разному.

2. Получаемая в результате решения уравнений Максвелла скорость распространения электромагнитных волн в пустом пространстве оказалась независящей от скоростей движения как источника этих волн, так и наблюдателя. Этот вывод полностью противоречило классическому закону сложения скоростей.

    Все попытки видоизменить уравнения электромагнетизма так, чтобы привести их в согласие с принципами классического естествознания приводили к теоретическому предсказанию эффектов, ненаблюдаемых на эксперименте, и были признаны несостоятельными.

    Преобразования Лоренца. Поскольку уравнения Максвелла не были инвариантными относительно преобразований Галилея, т.е. вопреки требованиям принципа относительности изменяли свою форму при переходе из одной инерциальной системы отсчета в другую, по правилам, задаваемым соотношениями:

(12)        ,

Лоренцем был поставлен естественный вопрос об отыскании таких преобразований координат и времени, которые не изменяли бы уравнений Максвелла и были при этом максимально простыми. Эта задача была им решена как чисто математическая:

(13)        .

Сравнивая преобразования Галилея (12) и Лоренца (13), легко заметить, что последние переходят в классические в случае скоростей, малых по сравнению со скоростью света с. Т.о. предложенные Лоренцем соотношения удовлетворяли принципу соответствия, согласно которому новая теория должна согласовываться со старой о областях, где последняя была надежно проверена на экспериментах. Кроме того, следующий из преобразований Лоренца релятивистский закон сложения скоростей оставлял скорость света инвариантной относительно переходя в любую инерциальную систему отсчета, движущуюся со скоростью, меньшей с.

     Опыты Майкельсона. Следующее из уравнений Максвелла утверждение о постоянстве скорости света при переходах в другие системы отсчета полностью противоречило классическим представлениям. Вставал естественный вопрос о его экспериментальной проверке. Весьма изящный эксперимент был осуществлен Майкельсоном с помощью специально сконструированного им прибора - интерферомета, позволяющего сравнивать времена распространения световых  сигналов вдоль двух взаимно перпендикулярных отрезков прямых, ограниченных на концах зеркалами (рис. 11_2). Идея опыта состояла в попытке зарегистрировать различие  скоростей распространения света вдоль разных плеч интерферометра,  вызванное орбитальным движением Земли. Опыты с интерферометром Майкельсона дали отрицательные результаты: скорость света с высокой точностью  оказалась независящей от соотношения направлений его распространения и движения Земли.

     Многочисленные попытки спасти классический закон сложения скоростей путем введения гипотетической среды - эфира, в которой распространяются  световые колебания потерпели полную неудачу свойства предполагаемой Среды оказывались весьма экзотическими, никаких экспериментальных подтверждений ее реального существования получено не было.

     Выход из возникшей на рубеже веков в естествознании тупиковой ситуации был предложен А. Эйнштейном, создавшим специальную теорию относительности (СТО), в которой на основе двух хорошо проверенных на эксперименте постулатов (утверждений) строится внутренне непротиворечивая (хотя и весьма странная с точки зрения классического естествознания и житейского опыта) концепция, объясняющая преобразования Лоренца и предсказывающая ряд новых явлений, реально зарегистрированных в природе. 

12.  Основные положения Специальной теории относительности

     Постулаты Эйнштейна. Современный релятивистский подход к описанию природных явлений базируется на двух постулатах Эйнштейна.

    Первый является естественным обобщением принципа относительности Галлилея с механических на все без исключения явления природы и может быть сформулирован как утверждение о невозможности наблюдателю, находящемуся в замкнутой системе отсчета, при помощи какого-либо физического (а значит и любого другого) опыта установить, покоится ли его система отсчета или находится в состоянии равномерного прямолинейного движения. В пользу этого постулата свидетельствует обширный житейский опыт, показывающий, что находящийся в закрытом помещении (трюме корабля)  наблюдатель не в состоянии зарегистрировать факт его движения не только в результате постановки механических опытов, но и с помощью своих ощущений, в основе возникновения которых лежат, как известно, электрохимические процессы.

      Вторым постулатом Эйнштейна является утверждение о постоянстве скорости света, неоднократно проверявшееся не только Майкельсоном, но и впоследствии в более точных экспериментах.

       Основные выводы релятивистской кинематики.  На основе сформулированных постулатов Эйнштейна пересматриваются все основные положения классической кинематики. Делается вывод о том, что понятия одновременности собитий, доительностьи временного промежутка и длины отрезка перестают носить абсолютный характер, становясь зависимыми от выбора системы отсчета, из которой ведется наблюдение (подобно тому, как при классическом описании координаты материальной точки и ее скорость носили относительный характер).

     Предсказываемый релятивистской теорией эффект замедления времени состоит в том, что с точки зрения движущегося относительно рассматриваемой системы наблюдателя все интервалы времени (t´), характеризующие поцессы в этой системе (колебания маятников часов, распад нестабильных частиц,  старение биологических организмов и т.д.) увеличиваются по сравнению с интервалами, наблюдаемыми в самой этой системе ( ):

(1)       .

Для находящихся же в самой расматриваемой системе наблюдателей происходящие в ней процессы протекают совершенно нормально, а время у движущегося наблюдателя “течет замедленно”.

     Эффект сокращения расстояний состоит в уменьшении длин отрезков с точки зрения наблюдателей, перемещающихся вдоль этих отрезков (отрезки, ориентированные перпендикулярно скорости относительного движения сохраняют свою длину неизменной):

(2)    

     Описанные эффекты проявляются лишь при скоростях, сравнимых со скоростью света и в настоящее время экспериментально зарегистрированы в пучках ультарелятивискских частиц, создаваемых на современных ускорителях. Например, короткоживущие частицы (время жизни , двигаясь с околосветовыми скоростями, вопреки классическим представлениям достигают приемника, удаленного на расстояние, значительно превышающее . С точки зрения неподвижного наблюдателя это явление можно объеснить эффектом замедления времени (1), “удлинняющим” жизнь частицы, с точки зрения наблюдателя, движущегося вместе с частицей - эффектом сокращения расстояния до мишени, “летящей ему навстречу” (2).

     Полученные Лоренцем преобразования (10.13) являются чисто математическим следствием рассмотренных соотношений (1) и (2).

     С эффектом замедления времени часто ошибочно связывают “парадокс близнецов” - утверждение о том, что двигавшийся с околосветовыми скоростями космический путешественник  должен вернуться  на Землю менее постаревшим, чем его брат, оставшийся дома. Кажущийся парадокс связан с тем, что всилу относительности равномерного движения с точки зрения космического путешественника эффект замедления времени должен наблюдаться на самой Земле. Реального противоречия не возникает, поскольку для того, чтобы возвратиться домой, космонавт должен в течение определенного времени двигаться с ускорением (тормозить, разворачивать корабль, вновь ускоряться), что нарушает симметрию между ним и наблюдателем на Земле (напомним, что ускорение носит абсолютный характер). Адекватное описание явлений, происходящих в ускоренно движущихся системах отсчета, выходит за рамки СТО и состаяляет предмет). Общей Теории Относительности (ОТО) .

     Пространство Минковского. Широко используемая в классической физике векторная форма записи законов природы объясняется не только желанием сэкономить место, но и является математическим отражением факта инвариантности законов природы относительно поворотов выбранной системы координат в пространстве, что, разумеется, требует инвариантной формы их математической записи. Действительно, в изображенных на рис. 12_1 повернутых друг относительно друга системах координат проекции всех векторов на одноименные оси различны, но равенство

(3)    

справедливо в каждой из систем, т.е. остается инвариантным относительно пространственных вращений. Помимо равенств между векторами инвариантами являются скалярные произведения векторов и вычисляемые с их помощью квадраты длин:

(4)     .

Координаты же вектора в новой системе отсчета могут быть рассчитаны через координаты в старой с помощью тригонометрии:

(5)       .

      Последовательное релятивистское описание явлений природы должно быть инвариантным относительно переходов из одной инерциальной системы отсчета в другую, движущуюся относительно первой. Как отмечалось, при таких переходах перестает быть справедливым классический векторный закон сложения скоростей, длина векторов изменяется, а в закон преобразований их компонент (преобразования Лоренца) помимо пространственных переменных входит время:

Информация о работе Лекции по "Концепции современного естествознания"