Лекции по "Концепции современного естествознания"

Автор работы: Пользователь скрыл имя, 20 Июня 2011 в 20:30, курс лекций

Описание

Естественные и гуманитарные науки. Наука занимается изучением объективно существующих ( т.е. существующих независимо от чьего-либо сознания) объектов и явлений природы. Вопрос о том, существует ли окружающий нас мир сам по себе или он является продуктом деятельности разума (принадлежащего некому высшему существу или каждому конкретному индивиду) составляет суть т.н. основного вопроса философии, классически формулируемом в виде дилеммы о первичности материи или сознания.

Работа состоит из  1 файл

Концепции современнго естествознания (лекции).DOC

— 1.51 Мб (Скачать документ)

     Инерциальные системы отсчета. В рамках формального математического подхода, реализуемого в кинематике, утверждение  Галилея выглядит бессмысленным, поскольку равномерное в одной системе отсчета движение может оказаться ускоренным в другой, которая “ничем не хуже” исходной. Наличие взаимодействия позволяет выделить особый класс систем отсчета, в которых свободные тела движутся без ускорения (в этих системах большинство законов природы имеют наиболее простую форму). Такие системы называются инерциальными. 

     Все инерциальные системы эквивалентны друг другу, в любой из них законы механики проявляются одинаково. Это свойство было также отмечено Галилеем в сформулированном им принципе относительности: никаким механическим опытом в замкнутой (т.е. не сообщающейся с внешним миром) системе отсчета невозможно установить покоится ли она или равномерно движется. Любая система отсчета, равномерно движущаяся относительно инерциальной тоже является инерциальной.

     Между инерциальными и неинерциальными системами отсчета существует принципиальное отличие: находящийся в замкнутой системе наблюдатель способен установить факт движения с ускорением последних, “не выглядывая наружу”(напр. при разгоне самолета пассажиры ощущают, что их “вдавливает” в кресла).  В дальнейшем будет показано, что в неинерциальных системах геометрия пространства перестает быть евклидовой.

      Законы Ньютона как основа классической механики.  Сформулированные И.Ньютоном три закона движения в принципе позволяют решить основную задачу механики, т.е. по известным начальному положению и скорости тела определить его положение и скорость в произвольный момент времени.

      Первый закон Ньютона постулирует существование инерциальных систем отсчета.

  Второй закон Ньютона утверждает, что в инерциальных системах ускорение тела пропорционально приложенной силе, физической величине, являющейся количественной мерой взаимодействия. Величину силы, характеризующей взаимодействие тел, можно определить, например, по деформации упругого тела, дополнительно введенного в систему так, что взаимодействие с ним полностью компенсирует исходное. Коэффициент пропорциональности между силой и ускорением называют массой тела:

(1)      F=ma

Под действием одинаковых сил тела с большей массой приобретают меньшие ускорения. Массивные тела при взаимодействии в меньшей степени меняют свои скорости, “стремясь сохранить  естественное движение по инерции”. Иногда говорят, что масса является мерой инертности тел (рис. 4_1).

     К классическим свойствам массы следует отнести 1) ее положительность (тела приобретают ускорения в направлении приложенных сил), 2) аддитивность (масса тела равна сумме масс его частей), 3) независимость массы от характера движения (напр. от скорости).

        Третий закон утверждает, что взаимодействия оба объекта испытывают действия сил, причем эти силы равны по величине и противоположно направлены.

       Типы фундаментальных взаимодействий.  Попытки классификации взаимодействий привели к идее выделения минимального набора фундаментальных взаимодействий, при помощи которых можно объяснить все наблюдаемые явления. По мере развития естествознания этот набор менялся. В ходе экспериментальных исследований периодически обнаруживались новые явления природы, не укладывающиеся в принятый фундаментальный набор, что приводило к его расширению (например, открытие структуры ядра потребовало введения ядерных сил).  Теоретические же осмысление, вцелом стремящееся к единому, максимально экономному  описанию наблюдаемого многообразия, неоднократно приволило к “великим объединениям” внешне совершенно несхожих явлений природы (ньютон понял, что падение яблока и движение планет вокруг Солнца являются результатами проявления гравитационных взаимодействий, Эйнштейн установил единую природу электрических и магнитных взаимодействий, Бутлеров опроверг утверждения о различной природе органических и неорганических веществ).

         В настоящее время принят набор из четырех типов фундаментальных взаимодействий: гравитационные, электромагнитные, сильное и слабые ядерные. Все остальные, известные на сегодняшний день, могут быть сведены к суперпозиции перечисленных.

    Гравитационные взаимодействия обусловлены наличием у тел массы и являются самыми слабыми из фундаментального набора. Они доминируют на расстояниях космических масштабов (в мега-мире).

     Электромагнитные взаимодействия  обусловлены специфическим свойством ряда элементарных частиц, называемым электрическим зарядом. Играют доминирующую роль в макро мире и микромире вплоть на расстояниях, превосходящих характерные размеры атомных ядер.

     Ядерные взаимодействия играют доминирующую роль в ядерных процессах и проявляются лишь на расстояниях, сравнимых с размером ядра, где классическое описание заведомо неприменимо.

     В настоящее время стали весьма популярны рассуждения о биополе, при помощи которого “объясняется”  ряд не очень надежно установленных на эксперименте явлений природы, связанных с биологическими объектами. Серьезное отношение к понятию биополя зависит от того, какой конкретный смысл. Вкладывается в этот термин.  Если понятие биополя используется для описания взаимодействий с участием биологических объектов, сводящихся к четырем фундаментальным, такой подход не вызывает принципиальных возражений, хотя введение нового понятия для описания “старых” явлений противоречит общепринятой в естествознании тенденции к минимизации теоретического описания.  Если же под биополем понимается новый тип фундаментальных взаимодействий, проявляющийся на макроскопическом уровне (возможности существования которого априорно, очевидно, отрицать бессмысленно), то для столь далеко идущих выводов необходимы очень серьезные теоретические и экспериментальные обоснования, сделанные на языке и методами современного естествознания, которые до настоящего времени представлены не были.

       Законы Ньютона и основная задача механики. Для решения основной задачи механики (определение положения тела в произвольный момент времени по известным начальному положению и скорости) достаточно найти ускорение тела как функцию времени a(t). Эту задачу решают законы Ньютона (1) при условии известных сил. В общем случае силы могут зависеть от времени, положения и скорости тела:

(2)     F=F(r,v,t) ,

т.е. для нахождения ускорения тела необходимо знать его положение и скорость. Описанная ситуация в математике носит название дифференциального уравнения второго порядка:

(3)     ,

(4)     

В математике показывается, что задача (3-4) при наличии двух начальных условий (положение и скорость в начальный момент времени) всегда имеет решение и притом единственное. Т.о. основная задача механики в принципе всегда имеет решение, однако найти его часто бывает весьма трудно.

      Детерминизм Лапласа. Немецкий математик Лаплас применил аналогичную теорему о существовании и единственности решения задачи типа (3-4) для системы из конечного числа уравнений для описания движения всех взаимодействующих друг с другом частиц реального мира и пришел к выводу о принципиальной возможности расчета положения всех тел в любой момент времени. Очевидно, что это означало возможность однозначного предсказанная будущего (хотя бы в принципе) и полную детерменированность (предопределенность) нашего мира. Сделанное утверждение, носящее скорее философский, а не естественно научный характер, получило название детерминизма Лапласа. При желании из него можно было сделать весьма далеко идущие философские и социальные выводы о невозможности влиять на предопределенный ход событий. Ошибочность этого учения состояла в том, что атомы или элементарные частицы (“материальные точки”, из которых составлены реальные тела) на самом деле не подчиняются классическому закону движения (3), верному лишь для макроскопических объектов (т.е. обладающих достаточно большими массами и размерами). Правильное с точки зрения сегодняшней физики описание движения во времени микроскопических объектов, какими являются составляющие макроскопические тела атомы и молекулы, дается уравнениями квантовой механики,, позволяющими определить только вероятность нахождения частицы в заданной точке, но принципиально не дающего возможности расчета траекторий движения для последующих моментов времени. 
 
 
 

5. Законы сохранения

     Иерархия естественно научных законов. Количество законов природы, сформулированных в естественных науках к настоящему времени, весьма велико. Они неравнозначны.

      Наиболее многочисленным является класс эмпирических законов, формулируемых в результате обобщения результатов экспериментальных наблюдений и измерений. Часто эти законы записываются в виде аналитических выражений, носящих достаточно простой, но приближенный характер. Область применимости этих законов оказывается достаточно узкой. При желании увеличить точность или расширить область применимости математические формулы, описывающие такие законы, существенно усложняются. Примерами эмпирических законов могут служить закон Гука (при небольших деформациях тел возникают силы, примерно пропорциональные величине деформации), закон валентности (в большинстве случаев атомы объединяются в химические соединения согласно их валентности, определяемым положением в Периодической таблице элементов),  некоторые частные законы наследственности ( напр. сибирские коты с голубыми глазами обычно от рождения глухи). На ранних этапах развития естественных наук в основном шло по пути накопления подобных законов. Со временем их количество возросло настолько, что возник вопрос о нахождении новых законов, позволяющих описать эмпирические в более компактной форме.

      Фундаментальные законы представляют собой весьма абстрактные формулировки, непосредственно не являющиеся следствием экспериментов. Обычно фундаментальные законы “угадываются”, а не выводятся из эмпирических. Количество таких законов весьма ограничено (напр. классическая механика содержит в себе лишь 4 фундаментальных закона:  законы Ньютона и закон Всемирного тяготения). Многочисленные эмпирические законы являются следствиями (иногда вовсе не очевидными) фундаментальных. Критерием истинности последних является соответствие конкретных следствий экспериментальным наблюдениям. Все известные на сегодняшний день фундаментальные законы описываются достаточно простыми и изящными математическими выражениями, “не ухудшающимися” при уточнениях. Несмотря на кажущийся абсолютный характер, область применимости фундаментальных законов так же ограничена. Эта ограниченность не связана с математическими неточностями, а имеет более фундаментальный характер: при выходе из области применимости фундаментального законы начинают терять смысл сами понятия, используемые в формулировках (так для микрообъектов оказывается невозможным строгое определение понятий ускорения и силы, что ограничивает применимости законов Ньютона).

       Ограниченность применимости фундаментальных законов естественно приводит к вопросу о существовании еще более общих законов. Таковыми являются законы сохранения. Имеющийся опыт развития естествознания показывает, что законы сохранения не теряют своего смысла при замене одной системы фундаментальных законов другой. Это свойство теперь используется как эвристический принцип, позволяющий априорно отбирать “жизнеспособные” фундаментальные законы при построении новых теорий. В большинстве случаев законы сохранения не способны дать столь полного описания явлений, какое дают фундаментальные законы, а лишь накладывают определенные запреты на реализацию тех или иных состояний при эволюции системы.

         Связь законов сохранения с симметрией системы. Ответ на естественный вопрос о том, почему справедливы законы сохранения в физике был найден сравнительно недавно. Оказалось, что  законы сохранения возникают в системах при наличии у них определенных элементов симметрии. (Элементом симметрии системы называется любое преобразование, переводящие систему в себя, т.е.  не изменяющее ее. Например элементом симметрии квадрата является поворот на прямой угол вокруг оси, проходящей через его центр - “ось вращения четвертого порядка”).

Информация о работе Лекции по "Концепции современного естествознания"