Автор работы: Пользователь скрыл имя, 29 Декабря 2011 в 13:04, реферат
Варочное оборудование широко применяется не только на предприятиях массового питания, но и на предприятиях мясной, молочной и консервной промышленности. Варка – один из основных видов тепловой обработки пищевых продуктов. Это процесс гидротермической обработки пищевых продуктов в жидкой среде: воде, бульоне, молоке, соусе и т. п.
Варка ряда пищевых продуктов протекает в специфических условиях теплообмена, что особенно ярко проявляется на примере варки каш. В этом случае нагреваемая среда представляет собой двухкомпонентную систему из крупы и воды.
В процессе нагрева крупа набухает и поглощает значительное количество воды и в этом случае создается возможность неравномерного нагрева массы продукта по обмену. Здесь необходимо ограничить перепад температур между грелкой и нагреваемой средой в период кипения до 10…12 оС.
Для этого в рубашечных аппаратах давление в рубашке поддерживается на уровне не более чем 50 кПа превышающее давление в рабочей камере.
По температурным решениям процесс варки может быть осуществлен при температурах ниже 100 оС, при 100 оС, и выше 100 оС.
Введение
Технико-экономическое обоснование................……………………………………………………………… 5
Основные виды пищеварочных котлов…...................................………………………………………….……6
2.1 Устройство и принцип действия электрических и газовых пищеварочных котлов………………..….…….6
2.2 Устройство и принцип действия твердотопливных и паровых пищеварочных котлов……………..…….15
Тепловой расчет котла……………………………………………………………………………..…………..19
3.1 Расход тепла на разогрев конструкций котла, парообразование в пароводяной рубашке, испарение
содержимого котла……………………………………………………………………………………………..19
3.2 Потери тепла в окружающую среду………………………………………………………………………...…21
Заключение...................................................................………………………………………………... …...……….26
Список использованных источников.................………………………………………………………….……… 27
Содержание
С.
Введение
2.1 Устройство и принцип действия электрических и газовых пищеварочных котлов………………..….…….6
2.2 Устройство и принцип действия твердотопливных и паровых пищеварочных котлов……………..…….15
3.1 Расход тепла на разогрев конструкций котла, парообразование в пароводяной рубашке, испарение
содержимого котла…………………………………
3.2 Потери тепла в окружающую
среду…………………………………………………………………
Заключение..............
Список
использованных источников.................………
Введение.
Варочное оборудование широко применяется не только на предприятиях массового питания, но и на предприятиях мясной, молочной и консервной промышленности. Варка – один из основных видов тепловой обработки пищевых продуктов. Это процесс гидротермической обработки пищевых продуктов в жидкой среде: воде, бульоне, молоке, соусе и т. п.
Варка ряда пищевых продуктов протекает в специфических условиях теплообмена, что особенно ярко проявляется на примере варки каш. В этом случае нагреваемая среда представляет собой двухкомпонентную систему из крупы и воды.
В процессе нагрева крупа набухает и поглощает значительное количество воды и в этом случае создается возможность неравномерного нагрева массы продукта по обмену. Здесь необходимо ограничить перепад температур между грелкой и нагреваемой средой в период кипения до 10…12 оС.
Для этого в рубашечных аппаратах давление в рубашке поддерживается на уровне не более чем 50 кПа превышающее давление в рабочей камере.
По температурным решениям процесс варки может быть осуществлен при температурах ниже 100 оС, при 100 оС, и выше 100 оС.
Конструкции варочных аппаратов должны соответствовать технологическим требованиям конкретного процесса варки пищевого продукта или кулинарного изделия в целом.
Основные технологические требования, предъявляемые к конструкциям варочных аппаратов сводятся к получению высококачественного готового продукта с максимальным сохранением пищевых (белков, жиров, углеводов), минеральных, экстрактивных веществ, витаминов при минимальных затратах теплоты.
В
настоящее время в
В последние годы наметилась тенденция на использование в конструкциях аппаратов греющих элементов, состоящих из унифицированных листоканильных панелей.
Такое
конструктивное решение создает
оптимальные условия для
Типоразмерный
ряд аппаратов при
Однако
при подобном конструктивном решении
возникают новые задачи расчетного и экономического
характера.
1. Технико-экономическое обоснование.
Анализ конструктивных и эксплутационных особенностей таких серийно выпускаемых аппаратов массового производства, как пищеварочные котлы, позволяет сделать вывод о чрезмерной разнотипности их конструкций, которая приводит к тому, что аппараты имеют мало общих узлов и деталей в пределах своего типоразмерного ряда.
Например, котлы емкостью 40 и 60 литров на электрическом обогреве имеют несколько модификаций и коренным образом отличаются от котлов емкостью 100, 160 и 250 л.
Еще большие различия наблюдаются при изготовлении аппаратов одного и того же технического назначения, но при использовании разных видов обогрева: пар, газ, электроэнергия и твердое топливо.
Это обстоятельство сводит к минимуму возможность унификации, уменьшения металлоемкости и упрощения изготовления аппаратов.
Принцип модулирования приобрел широкое распространение как в нашей стране, так и за рубежом. Современные горячие цеха оснащаются модульными аппаратами, скомплектованными в линии.
Однако этот принцип требует нового конструктивного оформления аппарата, оказывает влияние на его выходные параметры с технико-экономические показатели. Расчеты показывают, чем больше модуль, тем труднее конструировать аппарат, но тем больше возможность унификации узлов и деталей.
Оценивая серийные тепловые аппараты, сконструированные не по модульному принципу, можно выявить следующие недостатки:
При сопоставлении металлоемкости серийных котлов за сравнительную единицу принимают массу котла, отнесенную к единице его емкости – кг/дм3.
Расчеты показывают, что при использовании листоканальных панелей средний коэффициент уменьшения удельной металлоемкости панельного котла по отношению к серийному составляет Р=0,55.
Как показывает анализ, панельные котлы превосходят серийные по следующим показателям: металлоемкости, технологичности при изготовлении, эргономичности благодаря приспособленности к функциональной таре, возможности унификации в результате применения одинаковых панельных эффектов, надежности в следствии жесткости панельных систем, к.п.д.
Следует также отметить, что панельный принцип применим к достаточно широкому кругу тепловых аппаратов, перспективен при создании новых аппаратов периодического действия и трансформаторов; дает возможность по меньшей мере на 50% улучшить качество аппаратов, включая такие их показатели, как металлоемкость, степень унификации, технологичность, эргономичность, упрощает заводскую оснастку и производство.
В таблице 1 приведены средние показатели материалоемкости котлов.
Таблица 1
№ п/п | Тип котла | Масса котла, отнесенная к полезной емкости, кг/дм3 | Масса узла «варочный сосуд – греющая полость» |
1. | Серийные отечественные (электрические) | 1,72 | 0,43 |
2. | Серийные зарубежные (электрические) | 2,06 | – |
3. | Панельные (электрические) | 1,48 | 0,14 |
Из
данных таблицы 1 следует, что коэффициент
уменьшения массы узла «варочный
сосуд – греющая полость» у панельных
котлов составляет к1=0,14/0,43=0,325, а
для массы котла в целом к2=1,48/1,72=0,860.
2. Основные виды пищеварочных котлов.
На предприятиях массового питания эксплуатируются котлы различных типов, отличающиеся способом обогрева, вместимостью, формой варочных сосудов и видом энергоносителей.
В зависимости от давления в варочном сосуде все котлы классифицируются на пищеварочные, работающие при атмосферном или незначительном избыточном давлении, и автоклавы, работающие при повышенном давлении (200…250 кПа).
В зависимости от источника теплоты котлы подразделяются на твердотопливные, газовые, электрические и паровые.
По способу установки котлы бывают неопрокидывающиеся, опрокидывающиеся и со съемным варочным сосудом.
По способу обогрева различают котлы с косвенным и непосредственным обогревом. Котлы с косвенным обогревом получили наибольшее распространение. В качестве промежуточного теплоносителя в таких котлах используется вода (кипяченая или дистиллированная).
По
конструктивному оформлению котлы
классифицируются на немодульные, секционные
модульные и секционные модульные с функциональными
емкостями. Котлы имеют буквенно-цифровую
индексацию. Например, индекс котла КПЭ-160
расшифровывается так: К – котел; П – пищеварочный;
Э – электрический; 160 – вместимость (в
дм3).
2.1. Устройство и принцип действия электрических и газовых пищеварочных котлов.
Принципиальная конструктивная схема котла показана на примере электрического котла (рис. 2.1).
Котел состоит из варочного сосуда 6 и корпуса (наружного котла) 4, соединенных между собой сваркой. Пространство между ними образует греющую камеру - пароводяную рубашку 2. В нижней части рубашки располагается парогенератор 1, в котором вырабатывается водяной пар, заполняющий рубашку котла. Наружный котел покрывается тепловой изоляцией 3, которая сверху покрывается кожухом 5. Сверху котлы имеют крышку 7.
Рис.
2.1. Принципиальная конструктивная схема
электрического котла
Наряду с котлами, имеющими герметически закрываемую крышку, выпускаются неопрокидывающихся котлов с негерметизированной крышкой. Эти котлы обозначаются КПЭ-100НГ, КПЭ-160НГ, КПЭ-250НГ.
В настоящее время выпускаются электрические пищеварочные котлы КПЭ емкостью 40, 60, 100, 160 и 250 л; котлы с газовым обогревом КПГ емкостью 40, 60, 160 и 250 л; твердотопливные КПТ емкостью 160 л и паровые пищеварочные котлы КПП емкостью 100, 160 и 250 л. Котлы емкостью 40 и 60 л выпускаются опрокидывающимися, а емкостью 100, 160 и 250 л- неопрокидывающимися.
Пищеварочные котлы с косвенным обогревом снабжены контрольно-измерительными приборами и арматурой. К ним относятся: двойной предохранительный клапан 9, манометр 10 (для электрических котлов - электроконтактный), наполнительная воронка 11, кран уровня 12, клапан-турбинка 8.(рис. 2.1)
Двойной предохранительный клапан (рис. 2.2) соединен с рубашкой котла и имеет, корпус 5, в котором размещены два клапана: верхний 4 (паровой) и нижний 7 (вакуумный). Паровой клапан служит для сброса давления пара из греющей камеры при повышении его давления выше 49 кПа (0,5 кгс/см2). При повышении давления сверх допустимой величины пар приподнимает клапан, преодолевая усилие груза 3 определенной массы, и излишек пара с шумом выделяется в помещение. Испытывают и клеймят клапаны на заводе-изготовителе. Вакуумный клапан служит для поступления воздуха в рубашку при понижении давления пара в ней ниже атмосферного, что может происходить при остывании котла.
Для более надежной работы предохранительного клапана (чтобы паровой клапан не прикипал к седлу) рекомендуется перед началом работы котла нажать на рукоятку рычага 6.