Автор работы: Пользователь скрыл имя, 21 Февраля 2012 в 15:12, реферат
Всем известно, что медико-биологические и педагогические науки имеют дело с чело¬веком как с существом не только биологическим, но и социальным. Социально-биологические основы физичес¬кой культуры — это принципы взаимодействия социальных и биоло¬гических закономерностей в процессе овладения человеком ценнос-тями физической культуры.
Введение………..……………………………………………………………… 3
1. Организм как единая саморазвивающаяся и
саморегулирующаяся биологическая система…………………….4
2. Средства физической культуры, обеспечивающие устойчивость к
умственной и физической работоспособности..………………….…6
3. Физиологические механизмы и закономерности
Совершенствования отдельных систем организма под
воздействием направленной физической тренировке…..………9
4. Двигательная функция и повышение уровня адаптации и устойчивости организма человека к различным условиям внешней среды…….……..18
Заключение………………………………………………………………19
Список литературы…………………………….………………………...20
Также интересен следующий факт. Венозному кровообращению способствует присасывающее действие сердца при расслаблении и присасывающее действие грудной полости при вдохе. При активной двигательной деятельности циклического характера воздействие присасывающих факторов повышается. При малоподвижном образе жизни венозная кровь может застаиваться (например в брюшной полости или в области таза при длительном сидении). Вот почему движению крови по венам способствует деятельность окружающих их мышц (мышечный насос). Сокращаясь и расслабляясь, мышцы то сдавливают вены, то прекращают этот пресс, давая им расправиться и тем самым способствуют продвижению крови по направлению к сердцу, в сторону пониженного давления, так как движению крови в противоположную от сердца сторону препятствуют клапаны, имеющиеся в венозных сосудах. Чем чаще и активнее сокращаются и расслабляются мышцы, тем большую помощь сердцу оказывает мышечный насос. Особенно эффективно он работает при локомоциях (ходьбе, гладком беге, беге на лыжах, на коньках, при плавании и т.п.). Мышечный насос способствует более быстрому отдыху сердца и после интенсивной физической нагрузки.
Я не мог не упомянуть и о феномене гравитационного шока, который может наступить после резкого прекращения длительной, достаточно интенсивной циклической работы (спортивная ходьба, бег). Прекращение ритмичной работы мышц нижних конечностей сразу лишает помощи систему кровообращения: кровь под действием гравитации остается в крупных венозных сосудах ног, движение ее замедляется, резко снижается возврат крови к сердцу, а от него в артериальное сосудистое русло, давление артериальной крови падает, мозг оказывается в условиях пониженного кровоснабжения и гипоксии. Как результат этого явления — головокружение, тошнота, обморочное состояние. Об этом необходимо помнить и не прекращать резко движения циклического характера сразу после финиша, а постепенно (в течение 3— 5 минут) снижать интенсивность.
Особенности дыхания.
Как я уже указывал ранее, затраты энергии на физическую работу обеспечиваются биохимическими процессами, происходящими в мышцах в результате окислительных реакций, для которых постоянно необходим кислород. Во время мышечной работы для увеличения газообмена усиливаются функции дыхания и кровообращения. Совместная работа систем дыхания, крови и кровообращения по газообмену оцениваются рядом показателей: частотой дыхания, дыхательным объемом, легочной вентиляцией, жизненной емкостью легких, кислородным запросом, потреблением кислорода, кислородной емкостью крови и т.д.
Первый показатель – это частота дыхания. Средняя частота дыхания в покое составляет 15—18 циклов в мин. Один цикл состоит из вдоха, выдоха и дыхательной паузы. У женщин частота дыхания на 1—2 цикла больше. У спортсменов в покое частота дыхания снижается до 6—12 циклов в мин за счет увеличения глубины дыхания и дыхательного объема. При физической работе частота дыхания увеличивается, например у лыжников и бегунов до 20—28, у пловцов до 36—45 циклов в мин.
Второй показатель - дыхательный объем — количество воздуха, проходящее через легкие при одном дыхательном цикле (вдох, выдох, пауза). В покое дыхательный объем (объем воздуха, поступающего в легкие за один вдох) находится в пределах 200—300 мл. Величина дыхательного объема зависит от степени адаптации человека к физическим нагрузкам. При интенсивной физической работе дыхательный объем может увеличиваться до 500 мл и более.
Следующий показатель: легочная вентиляция. Это объем воздуха, который проходит через легкие за одну минуту. Величина легочной вентиляции определяется умножением величины дыхательного объема на частоту дыхания. Легочная вентиляция в покое может составлять 5—9 л.. При интенсивной физической работе у квалифицированных спортсменов она может достигать значительно больших величии (например, при дыхательном объеме до 2,5 л и частоте дыхания до 75 дыхательных циклов в минуту легочная вентиляция составляет 187,5 л, т.е. увеличится в 25 раз и более по сравнению с состоянием покоя).
Четвёртым показателем является жизненная емкость легких (ЖЕЯ) — максимальный объем воздуха, который может выдохнуть человек после максимального вдоха. Средние значения ЖЕЛ составляют у мужчин 3800—4200 мл, у женщин 3000—3500 мл. ЖЕЛ зависит от возраста, массы, роста, пола, состояния физической тренированности человека и от других факторов. У людей с недостаточным физическим развитием и имеющих заболевания эта величина меньше средней; у людей, занимающихся физической культурой, она выше, а у спортсменов может достигать 7000 мл и более у мужчин и 5000 мл и более у женщин. Широко известным методом определения ЖЕЛ является спирометрия (спирометр — прибор, позволяющий определить ЖЕЛ).
Кислородный запрос - это пятый показатель — количество кислорода, необходимое организму в 1 минуту для окислительных процессов в покое или для обеспечения работы различной интенсивности. В покое для обеспечения процессов жизнедеятельности организму требуется 250—300 мл кислорода. При интенсивной физической работе кислородный запрос может увеличиваться в 20 и более раз. Например, при беге на 5 км кислородный запрос у спортсменов достигает 5—6 л.
Суммарный (общий кислородный) запрос — количество кислорода, необходимое для выполнения всей предстоящей работы. Потребление кислорода — количество кислорода, фактически использованного организмом в состоянии покоя или при выполнении какой-либо работы. Максимальное потребление кислорода (МПК) — наибольшее количество кислорода, которое может усвоить организм при предельно напряженной для него работе.
Интересно, что способность организма к МПК имеет предел, который зависит от возраста, состояния сердечно-сосудистой системы, от активности протекания процессов обмена веществ и находится в прямой зависимости от степени физической тренированности. У не занимающихся спортом предел МПК находится на уровне 2—3,5 л/мин. У спортсменов высокого класса, особенно занимающихся циклическими видами спорта, МПК может достигать: у женщин — 4 л/мин и более; у мужчин — 6 л/мин и более. Абсолютная величина МПК зависит также от массы тела, поэтому для более точного ее определения относительное МПК рассчитывается на 1 кг массы тела. Для сохранения здоровья необходимо обладать способностью потреблять кислород как минимум на 1 кг — женщинам не менее 42 мл/мин, мужчинам — не менее 50 мл/мин.
МПК является показателем аэробной (кислородной) производительности организма.
Гипоксия (кислородное голодание, когда в клетки тканей поступает меньше кислорода, чем нужно для полного обеспечения потребности в энергии) наступает по различным причинам. Внешние причины — загрязнение воздуха, подъем на высоту (в горы, полет на самолете) и др. В этих случаях падает парциальное давление кислорода в атмосферном и альвеолярном воздухе и снижается количество кислорода, поступающего в кровь для доставки к тканям. Если на уровне моря парциальное давление кислорода в атмосферном воздухе равно 159 мм рт. ст., то на высоте 3000 м оно снижается до 110 мм, а на высоте 5 000 м — до 75—80 мм рт. ст.
Также, внутренние причины возникновения гипоксии зависят от состояния дыхательного аппарата и сердечно-сосудистой системы, проницаемости стенок альвеол и капилляров, количества эритроцитов в крови и процентного содержания в них гемоглобина, от степени проницаемости оболочек клеток тканей и их способности усваивать доставляемый кислород. При интенсивной мышечной работе, как правило, наступает двигательная гипоксия. Чтобы полнее обеспечить себя кислородом в условиях гипоксии, организм мобилизует мощные компенсаторные физиологические механизмы. Например, при подъеме в горы увеличиваются частота и глубина дыхания, количество эритроцитов в крови, процент содержания в них гемоглобина, учащается работа сердца. Если при этом выполнять физические упражнения, то повышенное потребление кислорода мышцами и внутренними органами вызывает дополнительную тренировку физиологических механизмов, обеспечивающих кислородный обмен и устойчивость к недостатку кислорода.
Фактически, кислородное снабжение организма представляет собой слаженную систему. Гиподинамия расстраивает эту систему, нарушая каждую из составляющих ее частей и их взаимодействие. В результате развивается кислородная недостаточность организма, гипоксия отдельных органов и тканей, которая может привести к расстройству обмена веществ. С этого часто начинается снижение устойчивости организма, его резервных возможностей в борьбе с утомлением и влиянием неблагоприятных факторов окружающей среды. Особенно страдает от гипоксии сердечно-сосудистая система, сосуды сердца и мозга. Низкий уровень кислородного обмена в стенках сосудов не только снижает их тонус и возможность управления ими со стороны регуляторных механизмов, но меняет и обмен веществ, что в конечном счете может привести к возникновению тяжелых расстройств и заболеваний.
Также, кислородное питание мышц имеет свои особенности. Известно, что в ритмически работающей мышце кровообращение также ритмичное. Сокращенные мышцы сдавливают капилляры, замедляя кровоток и поступление кислорода. Однако клетки мышц продолжают снабжаться кислородом. Доставку его берет на себя миоглобин — дыхательный пигмент мышечных клеток. Роль его важна еще и потому, что только мышечная ткань способна при переходе от покоя к интенсивной работе повышать потребление кислорода в 100 раз.
Таким образом, физическая тренировка, совершенствуя кровообращение, увеличивая содержание гемоглобина, миоглобина и скорость отдачи кислорода кровью, значительно расширяет возможности организма в потреблении кислорода.
Согласно данным исследований, органы по-разному переносят гипоксию различной длительности. Кора головного мозга — один из наиболее чувствительных к гипоксии органов. Она первой реагирует на недостаток кислорода. Значительно менее чувствительна к недостаткам кислорода скелетная мускулатура. На ней не отражается даже двухчасовое полное кислородное голодание. Большую роль в регуляции кислородного обмена, как в органах и тканях, так и в организме в целом имеет углекислота, являющаяся основным раздражителем дыхательного центра, который располагается в продолговатом отделе головного мозга. Между концентрацией в крови углекислого газа и доставкой кислорода тканям существуют строго определенные соотношения. Изменение содержания углекислого газа в крови оказывает влияние на центральные и периферические регуляторные механизмы, обеспечивающие улучшение снабжения организма кислородом, и служит мощным регулятором в борьбе с гипоксией.
Чтобы этого добиться нужно прибегать к систематическим тренировкам. Она средствами физической культуры и спорта не только стимулирует развитие сердечно-сосудистой и дыхательной системы, но и способствует значительному повышению уровня потребления кислорода организмом в целом. Наиболее эффективно совместную функцию взаимоотношения дыхания, крови, кровообращения развивают упражнения циклического характера, выполняемые на свежем воздухе. Однако следует помнить, насколько важно повышать возможности организма к потреблению кислорода, настолько же важно для него вырабатывать устойчивость к гипоксии. Это качество также совершенствуется в процессе тренировки, с помощью специальных процедур, путем создания искусственных условий гипоксии. Наиболее доступный способ — упражнение с задержкой дыхания. Систематически физические нагрузки определенной мощности, связанные с анаэробной производительностью, обусловливают возникновение в тканях гипоксического состояния, которое с помощыо функциональных систем организма при определенных условиях ликвидируется, тем самым эти системы, защищая организм, сами тренируются и совершенствуются. В результате положительный тренировочный эффект в борьбе с гипоксией формирует устойчивость тканей организма к гипоксии.
Итак, физические нагрузки оказывают двойной тренирующий эффект: повышают устойчивость к кислородному голоданию и, увеличивая мощность дыхательной и сердечно-сосудистой систем, способствуют лучшей утилизации кислорода.
Известно, что дыхательная система может управляться человеком произвольно. Необходимо иметь в виду некоторые приемы управления. Специалисты рекомендуют в условиях относительного покоя дышать через нос и только при интенсивной физической работе дышать одновременно и через рот; во всех случаях выпрямления тела делать вдох, при сгибании — выдох; в процессе выполнения циклических движений ритм дыхания приспосабливать к ритму движения, акцентируя внимание на выдохе; избегать необоснованных задержек дыхания и натуживания.
4. Двигательная функция и повышение уровня адаптации и устойчивости организма человека к различным условиям внешней среды
Я узнал, что развитие двигательных и вегетативных функций организма у детей и совершенствование их у взрослых и пожилых людей связано с двигательной активностью. Оздоровительное значение физической культуры общеизвестно. Имеется огромное количество исследований, показывающих положительное влияние физических упражнений на опорно-двигательный аппарат, центральную нервную систему, кровообращение, дыхание, выделение, обмен веществ, теплорегуляцию, органы внутренней секреции. Велико значение физических упражнений и как средства лечения.
Концепция адаптации, как мне удалось узнать, неоднократно пересматривалась с более широких представлений и анализа экспериментальных данных, в том числе о роли в процессе адаптации нервной системы. Действие факторов, вызывающих развитие адаптационных механизмов организма, всегда было комплексным.
Всем известно, что человек может мигрировать, оказываться в равнинных или горных условиях, в условиях жары или холода, при" этом он оказывается связан с особенностями питания, обеспечения водой, различными условиями индивидуального комфорта и цивилизации. Все это связано с развитием дополнительных механизмов адаптации, которые достаточно специфичны. В зависимости от силы воздействия раздражителей окружающей среды, условий и функционального состояния организма адаптивные факторы могут вызывать как благоприятные, так и неблагоприятные реакции организма.
Систематическая тренировка (ещё одно её достоинство из многих) формирует физиологические механизмы, расширяющие возможности организма, его готовность к адаптации, что обеспечивает в различные периоды (фазы) развертывания приспособительных физиологических процессов. Известный спортивный физиолог, специалист по адаптации А.В. Коробков выделял несколько таких фаз: начальная, переходная, устойчивая, дезаптация и повторная адаптация. Под готовностью к адаптации понимается такое морфофункциональное состояние организма, которое обеспечивает ему успешное приспособление к новым условиям существования. Для готовности организма к адаптации и эффективности в ее осуществлении значительную роль играют факторы, укрепляющие общее состояние организма, стимулирующие его неспецифическую резистентность (устойчивость): 1) рациональное питание; 2) обоснованный режим; 3) адаптирующие медикаментозные средства; 4) физическая тренировка; 5) закаливание.
Информация о работе Социально-биологические основы физической культуры и спорта