Автор работы: Пользователь скрыл имя, 23 Декабря 2012 в 20:17, курсовая работа
Краткие характеристики.
В методе Лауэ используется сплошной рентгеновский спектр, длина волны излучения не является постоянной,
кристалл при съёмке неподвижен,
из спектра используется набор длин волн от lmin до lмах, интенсивность которых достаточна для того, чтобы вызвать заметное почернение фотопленки. Лучи с большей или меньшей длиной волны дают очень слабые интерференционные пятна, которые уже не различаются.
Исследование монокристаллов методом Лауэ 3
Построение дифракционной картины 3
Схема съемки кристалла по методу Лауэ 4
Ориентация монокристалла по методу Лауэ 4
Порядок определения ориентировки монокристалла в пространстве по методу Лауэ 5
Результаты практической работы по изучению метода Лауэ 7
Исследование поликристаллических веществ методом Дебая 8
Исследование поликристаллических веществ методом Дебая 8
Съемка поликристаллических веществ в дебаевской камере 9
Порядок расположения и возможное число линий на дебаеграммах 10
Фазовый анализ вещества 12
Определение параметров кристаллической решетки по дебаеграмме 13
Точность определения параметров кристаллической решетки 14
Результаты практической работы по изучению метода Дебая 15
Метод вращения 16
Съемки в камере вращения 16
Принципы построения дифракционной картины 17
Определение периода идентичности вдоль оси вращения 19
Индицирование рентгенограммы вращения 20
Результаты практической работы по изучению метода вращения 23
Дифрактометрия 24
Принцип работы дифрактометра 24
Результаты практической работы по изучению метода вращения(по дифрактограмме) 26
Электронография 28
Исследование поликристаллических текстурированных образцов 28
Расчет электронограммф текстурированного образца 30
Результаты практической работы по изучению метода электронографии 31
Точка пересечения окружности фокусировки r1 и окружности радиуса R сместится. На рис. 4.1,б представлен случай, когда при ω = ω1 на окружность радиуса R попала сфокусированная линия от другого семейства плоскостей (H1K1L1), которая ранее (при (ω = ωо) давала размытость АВ (рис. 4.1, а), поскольку при ω0 для (H1K1L1) не выполнялось условие фокусировки. Для того чтобы зафиксировать сфокусированную дифракционную линию (H1K1L1), счетчик должен оказаться на окружности радиуса R под углом 2θ1 по отношению к падающему рентгеновскому лучу (в точке N1), и опять соотношение (4.1) дает θ1=ω1. Следовательно, для того чтобы зафиксировать все дифракционные линии в точках их фокусировки при повороте образца с угловой скоростью ω, счетчик должен вращаться по окружности радиуса R с удвоенной угловой скоростью (2ω).
Подобная идея реализована в рентгеновских аппаратах, получивших название дифрактометров. Основными блоками такого прибора являются: собственно рентгеновский аппарат с трубкой, счетчик квантов с электронной измерительной схемой и внешним регистрирующим прибором (самописец), гониометрическое устройство, в котором осуществляется контролируемое перемещение образца и счетчика относительно первичного пучка рентгеновских лучей.
Вращение образца и счетчика может меняться в широких пределах от до 8 град./мин. (в шкале 2θ). При этом на бумаге самописца вычерчивается интенсивность рентгеновской линии в зависимости от угла дифракции (рис.3.22). Применение дифрактометров сокращает продолжительность исследования, повышает чувствительность и точность измерений, позволяет исключить фотографическую и денситометрическую обработку фотопленки.
Результаты практической работы по изучению метода вращения(Дифрактограмма).
Цели работы:
Исходные данные:
l=1.93730 А структура CdSe - ZnSe
Данные, снятые с дифрактометра:
N |
H, K, L |
2q |
I,% |
d, A |
1 |
111 |
34.374 |
100 |
3.27810 |
2 |
220 |
57.628 |
4.0 |
2.00977 |
3 |
311 |
68.803 |
6.0 |
1.71445 |
Решётка кубическая.
Штрих диаграмма имеет вид:
Результаты работы:
Схема расчета следующая:
вычисляем a, A:
a1=5.6695 a2=5.6704 a3=5.6703 aсреднее=a1
принимаем aсреднее= aтвёрдого расствора
аCdSe=6.04 аZnSe=5.671
aтвёрдого расствора = аCdSe*x+ аZnSe(1-x)
получили x= 100.0 %
диаграмма:
Краткие характеристики.
Где U – ускоряющее напряжение электронографа.
Исследование
поликристаллических
В поликристаллических
образцах очень часто
Рассмотрим построение дифракционной картины для поликристаллической пленки, в которой ось аксиальной текстуры располагается перпендикулярно поверхности подложки, показанной на рисунке. В этом случае электронограмма будет иметь ряд характерных особенностей: для идеальной текстуры электронограмма точечная; точки, на которые распадаются сплошные кольца электронограммы, будут расположены симметрично относительно вертикальной оси электронограммы; на оси электронограммы будут лежать точки, индексы которых определяют ось текстуры.
Рис.5. 2. Схема электронограммы идеально текстурированной пленки.
При съемке
на отражение электронный луч падает на
пленку под очень небольшим углом 1–3º
(рис.5.2.). Дифракционный луч должен дать
пятна на электронограмме, симметричные
относительной вертикальной оси электронограммы.
В том случае, если угол между нормалью
к плоскости и осью текстуры φ=0º, т.е. плоскости перпендикулярны
к оси текстуры, то и α=0º. Следовательно, пятно дифракции
для таких плоскостей должно лежать на
оси симметрии электронограммы (на оси х). Индексы
плоскости (НКL) и нормали к ней
Рис. 5.3. Электронограмма вещества с аксиальной текстурой.
Наличие угла рассеяния d приводит к тому, что дифракционный максимум будет представлять собой не точку, а участок дуги, угловой размер которой соответствует степени разориентации отдельных кристалликов от идеальной текстуры (рис.5.3). Дуги имеют наибольшее почернение в центре и постепенно ослабляются к концам. Очевидно, чем больше длина дуги – тем больше угол рассеяния текстуры, т.е. угол, соответствующий отклонениям направления в отдельных кристалликах от нормали к подложке . При уменьшении угла рассеяния d дуги уменьшаются по длине, и в конечном счете вырождаются в точки.
Расчет электронограммы текстурированного образца.
Первоначально по электронограмме определяем набор d, согласно соотношению
, (5.1)
Затем необходимо
если нам известно а из таблиц и рассчитанные значения d. Найдя сумму квадратов индексов, по таблицам определяют сами индексы плоскостей, соответствующие данному кольцу электронограммы. Симметричное расположение пятен на электронограмме относительно вертикальной оси x дает основание предполагать присутствие оси аксиальной текстуры, перпендикулярной подложке.
Для определения индексов оси аксиальной текстуры выбирают пятна, расположенные на оси симметрии электронограммы x.. Определив индексы оси текстуры, правильность определения можно проверить, воспользовавшись формулой для углов в кубической решетке:
(5.3)
где m, n, p – индексы оси текстуры; H, K, L – индексы отражающей кристаллографической плоскости.
Вычисляя по формуле (5.2) всевозможные углы φ, учитывают не только численные значения индексов плоскостей, но и различные перестановки индексов, а также комбинации знаков.
Результаты теоретической работы по изучению электронографии.
Цели работы:
Исходные данные:
Вещество: ZnSe
a=5.65 А U=75 кВ L=400 мм
Ограничения: максимальный номер слоевой линии: 4
S=H2+K2+L2≤64
Т.к. решётка имеет тип структуры сфалерит, то она является гранецентрированной, а следовательно имеет базис:
HKL |
H2+K2+L2 |
111 |
3 |
200 |
4 |
220 |
8 |
311 |
11 |
222 |
12 |
400 |
16 |
331 |
19 |
420 |
20 |
422 |
24 |
333 |
27 |
d: 3.274, 2.835, 2.005, 1.71, 1.637, 1.417, 1.301, 1.268, 1.157, 1.091A
r: 0.527, 0.608, 0.86, 1.008, 1.053, 1.216, 1.325, 1.359, 1.489, 1.58 миллиметров
Информация о работе Кристаллография и методы исследования структур